Process evaluation for the separation of acetonitrile-water using extractive distillation with deep eutectic solvents as entrainers

萃取蒸馏 化学 共晶体系 共沸蒸馏 乙腈 共沸物 工艺工程 蒸馏 过程模拟 分离过程 过程(计算) 色谱法 有机化学 计算机科学 工程类 操作系统 合金
作者
Dongmin Han,Yanhong Chen,Mengru Dong
出处
期刊:Computers & Chemical Engineering [Elsevier]
卷期号:164: 107865-107865 被引量:18
标识
DOI:10.1016/j.compchemeng.2022.107865
摘要

· σ-profiles based COSMO-SAC theory is adopted to screen DESs entrainers for acetonitrile dehydration. · The selected DESs are further studied by the thermodynamic topological analysis. · For extractive distillation, EG and GC3:1 are evaluated economically. · The control structure of GC3:1 extractive distillation process is studied. Deep Eutectic Solvents (DESs) show properties that make them effective as environmental-friendly entrainers for extractive distillation. However, the technical and economic evaluation via process simulation and the method of screening a suitable DES for a given azeotropic system are less studied. In this work, the extractive distillation process for acetonitrile dehydration with glycolic acid/choline chloride 3:1 (GC3:1) as entrainer is studied. Firstly, the σ-profiles based on the COSMO-SAC model are employed to select an appropriate DES entrainer. Then, the feasibilities of GC3:1 and ethylene glycol (EG) as entrainer are further studied by the analysis of residue curve maps. Finally, the design and optimization of the extractive distillation process for acetonitrile dehydration with GC3:1 and EG are conducted. The results demonstrate that the conventional extractive distillation process with GC3:1 entrainer gives 13.40% and 9.64% reduction in TAC over the conventional and heat-integrated extractive distillation processes with EG as entrainer, respectively. The TAC of the GC3:1 process is further reduced by 3.14% after heat integration. In addition, the control scheme of the extractive distillation process with GC3:1 entrainer is studied by Aspen Dynamics, and the proposed control structure is effective in managing operational stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Naveed完成签到,获得积分10
1秒前
Ava应助ark861023采纳,获得10
2秒前
田様应助好好好采纳,获得10
2秒前
糊涂的冰夏完成签到 ,获得积分10
3秒前
wsc完成签到,获得积分10
5秒前
一直在么么哒完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
歪果仁195完成签到 ,获得积分10
7秒前
个性凡儿完成签到,获得积分10
9秒前
一大碗芋泥完成签到,获得积分10
10秒前
10秒前
10秒前
脑洞疼应助靜心采纳,获得10
10秒前
xu发布了新的文献求助10
13秒前
14秒前
14秒前
GG发布了新的文献求助10
14秒前
肥嘟嘟左卫门完成签到,获得积分10
14秒前
服部平次完成签到,获得积分10
15秒前
16秒前
zhao发布了新的文献求助10
17秒前
科研通AI2S应助沐风采纳,获得10
19秒前
李爱国应助张土豆采纳,获得10
19秒前
闫伯涵发布了新的文献求助10
20秒前
20秒前
22秒前
丘比特应助阿珩采纳,获得30
22秒前
与光同尘完成签到,获得积分10
23秒前
呼噜噜发布了新的文献求助10
23秒前
zhao完成签到,获得积分10
24秒前
chenren发布了新的文献求助10
25秒前
kele发布了新的文献求助10
25秒前
25秒前
柴郡喵完成签到,获得积分10
28秒前
29秒前
迷路山菡完成签到,获得积分10
29秒前
30秒前
内向平萱发布了新的文献求助20
31秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128773
求助须知:如何正确求助?哪些是违规求助? 2779532
关于积分的说明 7743900
捐赠科研通 2434858
什么是DOI,文献DOI怎么找? 1293670
科研通“疑难数据库(出版商)”最低求助积分说明 623407
版权声明 600514