Radiomic‐Based MRI for Classification of Solitary Brain Metastases Subtypes From Primary Lymphoma of the Central Nervous System

原发性中枢神经系统淋巴瘤 医学 随机森林 接收机工作特性 人工智能 支持向量机 队列 机器学习 放射科 计算机科学 淋巴瘤 病理 内科学
作者
L. Zhao,Rong Hu,Feng Xie,Daniel C. Kargilis,Maliha Imami,Jiaying Liu,Jun Guo,Xiao Xiao Jiao,Rushan Chen,Li Weihua,Lang Li
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (1): 227-235 被引量:3
标识
DOI:10.1002/jmri.28276
摘要

Differential diagnosis of brain metastases subtype and primary central nervous system lymphoma (PCNSL) is necessary for treatment decisions. The application of machine learning facilitates the classification of brain tumors, but prior investigations into primary lymphoma and brain metastases subtype classification have been limited.To develop a machine-learning model to classify PCNSL, brain metastases with primary lung and non-lung origin.Retrospective.A total of 211 subjects with pathologically confirmed PCNSL or brain metastases (training cohort 168 and testing cohort 43).A 3.0 T axial contrast-enhanced T1-weighted spin-echo inversion recovery sequence (T1WI-CE), axial T2-weighted fluid-attenuation inversion recovery sequence (T2FLAIR) ASSESSMENT: Several machine-learning models (support vector machine, random forest, and K-nearest neighbors) were built with least absolute shrinkage and selection operator (LASSO) using features from T1WI-CE, T2FLAIR, and clinical. The model with the highest performance in the training cohort was selected to differentiate lesions in the testing cohort. Then, three radiologists conducted a two-round classification (with and without model reference) using images and clinical information from testing cohorts.Five-fold cross-validation was used for model evaluation and calibration. Model performance was assessed based on sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC).Twenty-five image features were selected by LASSO analysis. Random forest classifier was selected for its highest performance on the training set with an AUC of 0.73. After calibration, this model achieved an accuracy of 0.70 on the testing set. Accuracies of all three radiologists improved under model reference (0.49 vs. 0.70, 0.60 vs. 0.77, 0.58 vs. 0.72, respectively).The random forest model based on conventional MRI and clinical data can diagnose PCNSL and brain metastases subtypes (lung and non-lung origin). Model classification can help foster the diagnostic accuracy of specialists and streamline prognostication workflow.4 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定紫雪完成签到,获得积分20
1秒前
3秒前
4秒前
5秒前
5秒前
liang发布了新的文献求助10
6秒前
小二郎应助蹲坑的撕裂者采纳,获得10
6秒前
CNS_Fighter88发布了新的文献求助10
8秒前
8秒前
呱呱呱发布了新的文献求助10
8秒前
可爱的函函应助罗呈凤采纳,获得10
10秒前
海绵宝宝发布了新的文献求助10
11秒前
大力的迎荷关注了科研通微信公众号
12秒前
呱呱呱完成签到,获得积分10
13秒前
13秒前
19秒前
紫色水晶之恋完成签到,获得积分0
20秒前
liang完成签到,获得积分10
20秒前
22秒前
洋洋发布了新的文献求助10
23秒前
Owen应助balalal采纳,获得10
24秒前
贝壳发布了新的文献求助10
29秒前
顾矜应助zty123采纳,获得10
31秒前
领导范儿应助于于于采纳,获得10
33秒前
英俊的铭应助马前人采纳,获得10
34秒前
ccc发布了新的文献求助10
34秒前
37秒前
38秒前
40秒前
11发布了新的文献求助10
42秒前
章小白完成签到,获得积分10
42秒前
42秒前
JamesPei应助吃吃吃采纳,获得10
42秒前
zty123完成签到,获得积分10
43秒前
balalal发布了新的文献求助10
44秒前
45秒前
zty123发布了新的文献求助10
45秒前
活力哈密瓜完成签到,获得积分10
45秒前
45秒前
bkagyin应助明亮的谷蓝采纳,获得10
46秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736474
求助须知:如何正确求助?哪些是违规求助? 3280344
关于积分的说明 10019345
捐赠科研通 2996944
什么是DOI,文献DOI怎么找? 1644338
邀请新用户注册赠送积分活动 781922
科研通“疑难数据库(出版商)”最低求助积分说明 749638