分割
计算机科学
人工智能
可视化
尺度空间分割
体素
模式识别(心理学)
图像分割
基于分割的对象分类
计算机视觉
直方图
图像(数学)
作者
Ngan V.T. Nguyen,Ciril Bohak,Dominik Engel,Peter Mindek,Ondřej Strnad,Peter Wonka,Sai Li,Timo Ropinski,Ivan Viola
出处
期刊:IEEE Transactions on Visualization and Computer Graphics
[Institute of Electrical and Electronics Engineers]
日期:2023-10-01
卷期号:29 (10): 4198-4214
被引量:2
标识
DOI:10.1109/tvcg.2022.3186146
摘要
Cryo-Electron Tomography (cryo-ET) is a new 3D imaging technique with unprecedented potential for resolving submicron structural detail. Existing volume visualization methods, however, cannot cope with its very low signal-to-noise ratio. In order to design more powerful transfer functions, we propose to leverage soft segmentation as an explicit component of visualization for noisy volumes. Our technical realization is based on semi-supervised learning where we combine the advantages of two segmentation algorithms. A first weak segmentation algorithm provides good results for propagating sparse user provided labels to other voxels in the same volume. This weak segmentation algorithm is used to generate dense pseudo labels. A second powerful deep-learning based segmentation algorithm can learn from these pseudo labels to generalize the segmentation to other unseen volumes, a task that the weak segmentation algorithm fails at completely. The proposed volume visualization uses the deep-learning based segmentation as a component for segmentation-aware transfer function design. Appropriate ramp parameters can be suggested automatically through histogram analysis. Finally, our visualization uses gradient-free ambient occlusion shading to further suppress visual presence of noise, and to give structural detail desired prominence. The cryo-ET data studied throughout our technical experiments is based on the highest-quality tilted series of intact SARS-CoV-2 virions. Our technique shows the high impact in target sciences for visual data analysis of very noisy volumes that cannot be visualized with existing techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI