Integrated electric logistics vehicle recharging station location–routing problem with mixed backhauls and recharging strategies

计算机科学 设施选址问题 拉格朗日松弛 布线(电子设计自动化) 车辆路径问题 网络规划与设计 数学优化 充电站 流量网络 电动汽车 计算机网络 数学 量子力学 物理 功率(物理)
作者
Senyan Yang,Lianju Ning,Lu Tong,Pan Shang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:140: 103695-103695 被引量:37
标识
DOI:10.1016/j.trc.2022.103695
摘要

The widespread application of electric vehicles for city last-mile logistics has been enhanced by the emerging trend of urban sustainable mobility, which intends to reduce vehicle emissions and the dependence on fossil fuels. The recharging facility location is critical for electric logistics network planning, because it significantly affects future operation costs and efficiency. This study proposes an integrated electric logistics vehicle recharging station location–routing problem with mixed backhauls and recharging strategies, which is formulated as a time-discretized multicommodity network flow optimization model based on a space–time–state–energy representation network. This study aims to optimize the selection of the recharging station location considering route planning with complicated constraints of recharging capacity, facility construction budget, vehicle loading capacity, battery remaining capacity, spatial structure of real road networks, mixed pickup and delivery requests, and service time windows. A hybrid Lagrangian relaxation and alternating direction method of multipliers (LR-ADMM) decomposition solution framework is constructed to decouple the proposed integrated problem into a recharging station location problem for strategic planning and an electric vehicle routing problem with mixed backhauls, time windows, and recharging strategies for operational decisions. These two subproblems are solved alternately by time-dependent forward dynamic programming algorithms embedded into the LR-ADMM framework. The solution quality is guaranteed by calculating the optimality gap between the best lower and upper bounds for each iteration. The experimental results based on the Sioux-Falls network and real-world West Jordan network prove the computational effectiveness and optimization quality of the proposed solution approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
追寻的彩虹完成签到,获得积分10
1秒前
wanmiao12完成签到,获得积分10
1秒前
张正完成签到,获得积分20
1秒前
myc发布了新的文献求助10
1秒前
1秒前
从容傲柏完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
爱吃的学术小白完成签到,获得积分10
3秒前
lisa完成签到 ,获得积分10
3秒前
LLY发布了新的文献求助10
3秒前
zhw116完成签到 ,获得积分10
3秒前
3秒前
有魅力的猕猴桃完成签到,获得积分10
4秒前
画个饼充饥完成签到,获得积分10
4秒前
慕何完成签到 ,获得积分10
4秒前
梅思双发布了新的文献求助10
4秒前
5秒前
Peng发布了新的文献求助10
5秒前
elivsZhou发布了新的文献求助10
5秒前
2025迷完成签到 ,获得积分10
5秒前
Lmj完成签到,获得积分10
5秒前
6秒前
ddd完成签到,获得积分10
6秒前
顾矜应助追寻的彩虹采纳,获得10
6秒前
埋骨何须桑梓地完成签到,获得积分10
7秒前
linxi完成签到,获得积分10
7秒前
论文多多完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助Hilda007采纳,获得30
7秒前
在水一方应助Balance Man采纳,获得30
8秒前
汕头凯奇完成签到,获得积分10
8秒前
8秒前
Mm完成签到,获得积分10
8秒前
8秒前
X_yyy完成签到,获得积分10
8秒前
Lmj发布了新的文献求助10
8秒前
9秒前
不吃香菜完成签到 ,获得积分10
9秒前
大模型应助孤独的猎手采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959