Integrated electric logistics vehicle recharging station location–routing problem with mixed backhauls and recharging strategies

计算机科学 设施选址问题 拉格朗日松弛 布线(电子设计自动化) 车辆路径问题 网络规划与设计 数学优化 充电站 流量网络 电动汽车 计算机网络 数学 量子力学 物理 功率(物理)
作者
Senyan Yang,Lianju Ning,Lu Tong,Pan Shang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:140: 103695-103695 被引量:37
标识
DOI:10.1016/j.trc.2022.103695
摘要

The widespread application of electric vehicles for city last-mile logistics has been enhanced by the emerging trend of urban sustainable mobility, which intends to reduce vehicle emissions and the dependence on fossil fuels. The recharging facility location is critical for electric logistics network planning, because it significantly affects future operation costs and efficiency. This study proposes an integrated electric logistics vehicle recharging station location–routing problem with mixed backhauls and recharging strategies, which is formulated as a time-discretized multicommodity network flow optimization model based on a space–time–state–energy representation network. This study aims to optimize the selection of the recharging station location considering route planning with complicated constraints of recharging capacity, facility construction budget, vehicle loading capacity, battery remaining capacity, spatial structure of real road networks, mixed pickup and delivery requests, and service time windows. A hybrid Lagrangian relaxation and alternating direction method of multipliers (LR-ADMM) decomposition solution framework is constructed to decouple the proposed integrated problem into a recharging station location problem for strategic planning and an electric vehicle routing problem with mixed backhauls, time windows, and recharging strategies for operational decisions. These two subproblems are solved alternately by time-dependent forward dynamic programming algorithms embedded into the LR-ADMM framework. The solution quality is guaranteed by calculating the optimality gap between the best lower and upper bounds for each iteration. The experimental results based on the Sioux-Falls network and real-world West Jordan network prove the computational effectiveness and optimization quality of the proposed solution approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
star完成签到,获得积分10
刚刚
脑洞疼应助李希采纳,获得10
1秒前
1秒前
感动的溪灵完成签到,获得积分20
1秒前
浩铭完成签到,获得积分10
1秒前
zyn关闭了zyn文献求助
1秒前
莫虚发布了新的文献求助10
2秒前
www完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助150
2秒前
付威威完成签到,获得积分10
2秒前
岛屿发布了新的文献求助10
3秒前
调皮的问芙完成签到 ,获得积分10
3秒前
3秒前
大白沙子完成签到,获得积分10
3秒前
4秒前
橙橙橙橙完成签到,获得积分10
4秒前
丘比特应助毛毛弟采纳,获得10
4秒前
4秒前
no1isme完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
英勇的沛春完成签到 ,获得积分10
6秒前
隐形曼青应助孔大漂亮采纳,获得10
6秒前
丛士乔完成签到,获得积分10
6秒前
6秒前
kiki发布了新的文献求助30
7秒前
cooper完成签到 ,获得积分10
7秒前
HarryQ完成签到,获得积分10
8秒前
wxj发布了新的文献求助10
8秒前
咕咕嘎嘎完成签到,获得积分10
8秒前
9秒前
俭朴的可冥完成签到,获得积分10
9秒前
Yang_728发布了新的文献求助10
9秒前
科研通AI5应助岛屿采纳,获得10
9秒前
Cxxxxxxv完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助50
11秒前
11秒前
TIPHA发布了新的文献求助10
11秒前
艾欧大贝发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097188
求助须知:如何正确求助?哪些是违规求助? 4309756
关于积分的说明 13428112
捐赠科研通 4137185
什么是DOI,文献DOI怎么找? 2266508
邀请新用户注册赠送积分活动 1269609
关于科研通互助平台的介绍 1205917