Integrated electric logistics vehicle recharging station location–routing problem with mixed backhauls and recharging strategies

计算机科学 设施选址问题 拉格朗日松弛 布线(电子设计自动化) 车辆路径问题 网络规划与设计 数学优化 充电站 流量网络 电动汽车 计算机网络 数学 量子力学 物理 功率(物理)
作者
Senyan Yang,Lianju Ning,Lu Tong,Pan Shang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:140: 103695-103695 被引量:37
标识
DOI:10.1016/j.trc.2022.103695
摘要

The widespread application of electric vehicles for city last-mile logistics has been enhanced by the emerging trend of urban sustainable mobility, which intends to reduce vehicle emissions and the dependence on fossil fuels. The recharging facility location is critical for electric logistics network planning, because it significantly affects future operation costs and efficiency. This study proposes an integrated electric logistics vehicle recharging station location–routing problem with mixed backhauls and recharging strategies, which is formulated as a time-discretized multicommodity network flow optimization model based on a space–time–state–energy representation network. This study aims to optimize the selection of the recharging station location considering route planning with complicated constraints of recharging capacity, facility construction budget, vehicle loading capacity, battery remaining capacity, spatial structure of real road networks, mixed pickup and delivery requests, and service time windows. A hybrid Lagrangian relaxation and alternating direction method of multipliers (LR-ADMM) decomposition solution framework is constructed to decouple the proposed integrated problem into a recharging station location problem for strategic planning and an electric vehicle routing problem with mixed backhauls, time windows, and recharging strategies for operational decisions. These two subproblems are solved alternately by time-dependent forward dynamic programming algorithms embedded into the LR-ADMM framework. The solution quality is guaranteed by calculating the optimality gap between the best lower and upper bounds for each iteration. The experimental results based on the Sioux-Falls network and real-world West Jordan network prove the computational effectiveness and optimization quality of the proposed solution approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助哈哈哈采纳,获得10
刚刚
刘洋发布了新的文献求助10
刚刚
内含子发布了新的文献求助10
1秒前
乐乐应助lex采纳,获得10
1秒前
何嘉欣完成签到,获得积分20
1秒前
petiteblanche发布了新的文献求助10
1秒前
1秒前
liu完成签到,获得积分20
2秒前
无名发布了新的文献求助10
2秒前
听雨完成签到 ,获得积分10
2秒前
窗格晴语完成签到,获得积分10
2秒前
科研通AI6.1应助洪峰采纳,获得10
3秒前
噼里啪啦完成签到,获得积分10
3秒前
3秒前
舒心的雍发布了新的文献求助10
3秒前
LIU关闭了LIU文献求助
3秒前
4秒前
4秒前
JamesPei应助牛奶松饼采纳,获得30
4秒前
Rinamamiya发布了新的文献求助30
4秒前
rancho发布了新的文献求助10
4秒前
所所应助ymx采纳,获得10
4秒前
4秒前
李健应助筱筱采纳,获得10
5秒前
李健应助隐形追命采纳,获得10
5秒前
5秒前
5秒前
天天快乐应助wb采纳,获得10
6秒前
猪猪hero应助时尚的煎蛋采纳,获得10
6秒前
情怀应助恰个鱼丸采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
颖子发布了新的文献求助10
7秒前
xingxing完成签到,获得积分10
7秒前
7秒前
Cik完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
楠逸发布了新的文献求助10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751492
求助须知:如何正确求助?哪些是违规求助? 5468644
关于积分的说明 15370160
捐赠科研通 4890643
什么是DOI,文献DOI怎么找? 2629816
邀请新用户注册赠送积分活动 1578002
关于科研通互助平台的介绍 1534196