Seismic performance assessment of corroded RC columns based on data-driven machine-learning approach

人工神经网络 背景(考古学) 承载力 失效模式及影响分析 随机森林 阿达布思 方位(导航) 工程类 计算机科学 结构工程 决策树 机器学习 栏(排版) 人工智能 地质学 支持向量机 连接(主束) 古生物学
作者
Jigang Xu,Wan Hong,Jian Zhang,Shitong Hou,Gang Wu
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:255: 113936-113936 被引量:46
标识
DOI:10.1016/j.engstruct.2022.113936
摘要

Corrosion of steel reinforcements is a major factor that will adversely affect the seismic performance of the reinforced concrete (RC) columns. This paper investigates the application of machine learning (ML)-based approach for seismic failure mode and maximum bearing capacity prediction for corroded RC columns. A comprehensive database consisting of 180 cyclic tests of corroded RC columns are collected. Six ML algorithms including three single learning methods (k-Nearest neighbors, Decision tree, Artificial neural network) and three ensemble learning methods (Random forest, AdaBoost, CatBoost) are selected to develop the predictive model. The performance of the six models are evaluated and the application of ML-based approaches for life-cycle seismic performance assessment of RC column is demonstrated with a case-study column. The results show that the Random forest and CatBoost models have the best performance for seismic failure mode prediction with an accuracy of 89%. The best model for bearing capacity prediction is the CatBoost model which has a R2 of 0.92, and the CatBoost model is superior to the traditional mechanism-based code models for bearing capacity prediction. The ML-based models can conveniently predict the seismic failure mode and bearing capacity of RC columns in its life-cycle context without complicated numerical simulations or theoretical calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助恋雅颖月采纳,获得10
1秒前
m123发布了新的文献求助10
1秒前
1秒前
完美世界应助ccc采纳,获得10
1秒前
2秒前
二大爷发布了新的文献求助10
2秒前
我是老大应助moon采纳,获得10
4秒前
SRQ发布了新的文献求助20
5秒前
5秒前
科研通AI2S应助碧蓝世立采纳,获得10
6秒前
Lucas应助一颗橙子采纳,获得10
6秒前
郴欧尼发布了新的文献求助10
6秒前
常大有发布了新的文献求助10
7秒前
小遇完成签到 ,获得积分10
8秒前
桐桐应助Diane采纳,获得20
9秒前
9秒前
10秒前
11秒前
11秒前
11秒前
希望天下0贩的0应助marco采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
tuya发布了新的文献求助20
13秒前
13秒前
crise完成签到,获得积分20
14秒前
16秒前
捉一只小鱼完成签到,获得积分10
16秒前
xux894发布了新的文献求助10
16秒前
恋雅颖月发布了新的文献求助10
17秒前
wd完成签到,获得积分10
17秒前
心落失发布了新的文献求助10
17秒前
19秒前
天天快乐应助Nelson_Foo采纳,获得10
19秒前
戏言121发布了新的文献求助10
19秒前
科研小垃圾完成签到,获得积分10
20秒前
20秒前
踏实从雪完成签到 ,获得积分10
20秒前
21秒前
Gmute完成签到,获得积分20
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180