CDANet: Contextual Detail-Aware Network for High-Spatial-Resolution Remote-Sensing Imagery Shadow Detection

计算机科学 人工智能 稳健性(进化) 计算机视觉 像素 影子(心理学) 编码器 图像分辨率 目标检测 分割 遥感 地理 心理学 生物化学 化学 心理治疗师 基因 操作系统
作者
Qiqi Zhu,Yang Yang,Xiaoliang Sun,Minyi Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2022.3143886
摘要

Shadow detection automatically marks shadow pixels in high-spatial-resolution (HSR) imagery with specific categories based on meaningful colorific features. Accurate shadow mapping is crucial in interpreting images and recovering radiometric information. Recent studies have demonstrated the superiority of deep learning in very-high-resolution satellite imagery shadow detection. Previous methods usually overlap convolutional layers but cause the loss of spatial information. In addition, the scale and shape of shadows vary, and the small and irregular shadows are challenging to detect. In addition, the unbalanced distribution of the foreground and the background causes the common binary cross-entropy loss function to be biased, which seriously affects model training. A contextual detail-aware network (CDANet), a novel framework for extracting accurate and complete shadows, is proposed for shadow detection to remedy these issues. In CDANet, a double branch module is embedded in the encoder–decoder structure to effectively alleviate low-level local information loss during convolution. The contextual semantic fusion connection with the residual dilation module is proposed to provide multiscale contextual information of diverse shadows. A hybrid loss function is designed to retain the detailed information of the tiny shadows, which per-pixel calculates the distribution of shadows and improves the robustness of the model. The performance of the proposed method is validated on two distinct shadow detection datasets, and the proposed CDANet reveals higher portability and robustness than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小啦啦3082完成签到 ,获得积分10
1秒前
高骏伟发布了新的文献求助10
2秒前
中和皇极应助Lzt采纳,获得50
3秒前
好滴捏发布了新的文献求助10
4秒前
隐形曼青应助sharon采纳,获得10
7秒前
111发布了新的文献求助10
11秒前
完美大神完成签到 ,获得积分10
14秒前
Zjx关闭了Zjx文献求助
14秒前
希望天下0贩的0应助ii采纳,获得10
16秒前
大个应助乱武采纳,获得10
16秒前
17秒前
19秒前
浪客完成签到 ,获得积分10
19秒前
20秒前
古月发布了新的文献求助10
22秒前
echo发布了新的文献求助10
24秒前
wen_xxx发布了新的文献求助10
26秒前
lty发布了新的文献求助10
26秒前
27秒前
SONNG完成签到,获得积分10
28秒前
sharon完成签到,获得积分10
30秒前
31秒前
ii发布了新的文献求助10
32秒前
今后应助起名字好难采纳,获得10
32秒前
33秒前
zhangyu应助豆豆采纳,获得10
39秒前
打打应助结实的路灯采纳,获得10
39秒前
一二完成签到,获得积分10
40秒前
xuyang发布了新的文献求助10
41秒前
41秒前
Whassupww完成签到,获得积分10
41秒前
42秒前
海孩子发布了新的文献求助10
43秒前
jingxian发布了新的文献求助10
44秒前
Hello应助初见采纳,获得10
45秒前
46秒前
重要的班完成签到,获得积分20
46秒前
47秒前
49秒前
温米发布了新的文献求助10
49秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662