CDANet: Contextual Detail-Aware Network for High-Spatial-Resolution Remote-Sensing Imagery Shadow Detection

计算机科学 人工智能 稳健性(进化) 计算机视觉 像素 影子(心理学) 编码器 图像分辨率 目标检测 分割 遥感 地理 基因 操作系统 心理学 生物化学 化学 心理治疗师
作者
Qiqi Zhu,Yang Yang,Xiaoliang Sun,Minyi Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2022.3143886
摘要

Shadow detection automatically marks shadow pixels in high-spatial-resolution (HSR) imagery with specific categories based on meaningful colorific features. Accurate shadow mapping is crucial in interpreting images and recovering radiometric information. Recent studies have demonstrated the superiority of deep learning in very-high-resolution satellite imagery shadow detection. Previous methods usually overlap convolutional layers but cause the loss of spatial information. In addition, the scale and shape of shadows vary, and the small and irregular shadows are challenging to detect. In addition, the unbalanced distribution of the foreground and the background causes the common binary cross-entropy loss function to be biased, which seriously affects model training. A contextual detail-aware network (CDANet), a novel framework for extracting accurate and complete shadows, is proposed for shadow detection to remedy these issues. In CDANet, a double branch module is embedded in the encoder–decoder structure to effectively alleviate low-level local information loss during convolution. The contextual semantic fusion connection with the residual dilation module is proposed to provide multiscale contextual information of diverse shadows. A hybrid loss function is designed to retain the detailed information of the tiny shadows, which per-pixel calculates the distribution of shadows and improves the robustness of the model. The performance of the proposed method is validated on two distinct shadow detection datasets, and the proposed CDANet reveals higher portability and robustness than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
faith发布了新的文献求助10
1秒前
金陵笑客完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
酷波er应助小饼干采纳,获得10
3秒前
3秒前
大慧慧发布了新的文献求助10
4秒前
爱妃完成签到,获得积分10
4秒前
NCNST-shi完成签到,获得积分10
4秒前
小马哥完成签到,获得积分10
5秒前
隐形曼青应助巫马尔槐采纳,获得10
5秒前
华仔应助天天采纳,获得10
5秒前
orixero应助尹雪儿采纳,获得10
6秒前
小赵发布了新的文献求助20
7秒前
温婉的从露完成签到 ,获得积分10
7秒前
黙宇循光发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
11秒前
英姑应助NCNST-shi采纳,获得10
11秒前
优秀的飞薇关注了科研通微信公众号
11秒前
12秒前
13秒前
13秒前
隐形曼青应助大慧慧采纳,获得10
13秒前
14秒前
14秒前
李爱国应助zjq采纳,获得10
14秒前
15秒前
15秒前
巫马尔槐发布了新的文献求助10
15秒前
依霏完成签到,获得积分10
16秒前
路漫漫完成签到,获得积分10
16秒前
JV完成签到,获得积分10
17秒前
12346164发布了新的文献求助10
17秒前
单薄白薇发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146066
求助须知:如何正确求助?哪些是违规求助? 2797486
关于积分的说明 7824486
捐赠科研通 2453874
什么是DOI,文献DOI怎么找? 1305891
科研通“疑难数据库(出版商)”最低求助积分说明 627598
版权声明 601491