机制(生物学)
萧条(经济学)
认知
神经科学
心理学
业务
物理
经济
量子力学
宏观经济学
作者
Niu Juan,Bailing Wang,Tian-Tian Zhou,Tian Wang
出处
期刊:Social Science Research Network
[Social Science Electronic Publishing]
日期:2022-01-01
摘要
Depressive disorder (DD) is associated with N6-methyladenosine (m6A) hypermethylation. This study sought to explore the molecular mechanism of Methyltransferase-like 3 (METTL3) in cognitive deficits of chronic unpredictable mild stress (CUMS)-treated rats and provide novel targets for DD treatment. A DD rat model was established via CUMS treatment. Cognitive deficits were assessed via body weighing and behavioral tests. METTL3, microRNA (miR)-221-3p, pri-miR-221, GRB2-associated binding protein 1 (Gab1) expressions in hippocampal tissues were detected via RT-qPCR and Western blotting. m6A, DiGeorge syndrome critical region gene 8 (DGCR8)-bound pri-miR-221 and pri-miR-221 m6A levels were measured. The binding relationship between miR-221-3p and Gab1 was testified by dual-luciferase and RNA pull-down assays. Rescue experiments were designed to confirm the role of miR-221-3p and Gab1. METTL3 was highly expressed in CUMS rats, and silencing METTL3 attenuated cognitive deficits of CUMS rats. METTL3-mediated m6A modification facilitated processing and maturation of pri-miR-221 via DGCR8 to upregulate miR-221-3p. miR-221-3p targeted Gab1. miR-221-3p overexpression or Gab1 downregulation reversed the role of silencing METTL3 in CUMS rats. Overall, METTL3-mediated m6A modification facilitated processing and maturation of pri-miR-221 to upregulate miR-221-3p and then inhibit Gab1, thereby aggravating cognitive deficits of CUMS rats.
科研通智能强力驱动
Strongly Powered by AbleSci AI