Optimization Techniques for Improving the Performance of Silicone‐Based Dielectric Elastomers

材料科学 弹性体 硅酮 介电弹性体 电介质 复合材料 弹性聚硅酮类 高分子科学 光电子学
作者
Anne Ladegaard Skov,Liyun Yu
出处
期刊:Advanced Engineering Materials [Wiley]
卷期号:20 (5) 被引量:58
标识
DOI:10.1002/adem.201700762
摘要

Dielectric elastomers are possible candidates for realizing products that are in high demand by society, such as soft robotics and prosthetics, tactile displays, and smart wearables. Diverse and advanced products based on dielectric elastomers are available; however, no elastomer has proven ideal for all types of products. Silicone elastomers, though, are the most promising type of elastomer when viewed from a reliability perspective, since in normal conditions they do not undergo any chemical degradation or mechanical ageing/relaxation. Within this review, different pathways for improving the electro‐mechanical performance of dielectric elastomers are highlighted. Various optimization methods for improved energy transduction are investigated and discussed, with special emphasis placed on the promise each method holds. The compositing and blending of elastomers are shown to be simple, versatile methods that can solve a number of optimization issues. More complicated methods, involving chemical modification of the silicone backbone as well as controlling the network structure for improved mechanical properties, are shown to solve yet more issues. From the analysis, it is obvious that there is not a single optimization technique that will lead to the universal optimization of dielectric elastomer films, though each method may lead to elastomers with certain features, and thus certain potentials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助甜甜的飞槐采纳,获得10
1秒前
ltc完成签到,获得积分10
3秒前
3秒前
共享精神应助健康的惜文采纳,获得10
3秒前
4秒前
ankh发布了新的文献求助10
4秒前
Akim应助新雨采纳,获得20
4秒前
跳跃的幼丝完成签到,获得积分10
6秒前
7秒前
香蕉觅云应助小栗采纳,获得10
7秒前
7秒前
derma给derma的求助进行了留言
8秒前
Jasper应助杨九斤Jenney采纳,获得10
8秒前
随便起个名完成签到,获得积分10
8秒前
8秒前
paopao发布了新的文献求助10
8秒前
陈晗予发布了新的文献求助10
9秒前
fighting完成签到,获得积分10
11秒前
东方既白发布了新的文献求助10
14秒前
飞云完成签到 ,获得积分20
15秒前
SciGPT应助EKAAS采纳,获得10
15秒前
小小完成签到 ,获得积分10
15秒前
16秒前
17秒前
17秒前
小马甲应助Lucy采纳,获得10
18秒前
标致幻然完成签到,获得积分10
18秒前
19秒前
在水一方应助孤独曲奇采纳,获得30
20秒前
heben发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
26秒前
哈哈发布了新的文献求助10
27秒前
cher完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
ankh完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124564
求助须知:如何正确求助?哪些是违规求助? 2774883
关于积分的说明 7724421
捐赠科研通 2430307
什么是DOI,文献DOI怎么找? 1291057
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297