The application of geospatial techniques in monitoring karst vegetation recovery in southwest China

喀斯特 植被(病理学) 地理空间分析 生态系统服务 环境科学 生态系统 湿地 地理 生物多样性 环境资源管理 生态学 遥感 医学 生物 病理 考古
作者
Chunhua Zhang,Xiangkun Qi,Kelin Wang,Mingyang Zhang,Yuemin Yue
出处
期刊:Progress in Physical Geography [SAGE Publishing]
卷期号:41 (4): 450-477 被引量:82
标识
DOI:10.1177/0309133317714246
摘要

The karst region in southwestern China, one of the largest continuous karst areas in the world, is special for its high landscape heterogeneity, unique hydrology, high endemism among vegetation species and high intensity of human disturbance. The region had experienced severe degradation through karst rocky desertification (KRD) between the 1950s and 1990s. Starting in the late 1990s, various levels of the Chinese government conducted several ecological projects to recover degraded karst ecosystems. It was reported that the implementation of these projects had been successful in facilitating the recovery of karst vegetation in many areas. However, global climate changes may compromise the efficacy of recovery. Geospatial techniques had been employed to map and monitor karst ecosystem conditions during the recovery process. We examined the history and progress of the various geospatial techniques applied to monitor and evaluate karst vegetation conditions. In addition, we reviewed the techniques used to assess and monitor KRD, KRD influencing factors, vegetation community type, fractional vegetation cover, vegetation dynamics, vegetation productivity, ecosystem goods and services, vegetation biodiversity, ecosystem health and rural society changes. We also explored the potential to apply geospatial techniques for karst vegetation recovery in the future. It is projected that there will be more remotely sensed images for the vegetation dynamics monitoring at numerous scales. New techniques (e.g. image fusion and data assimilation) will be available to manage scale and heterogeneity issues in the karst landscape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Caili应助海豹采纳,获得10
1秒前
时尚的冰棍儿完成签到 ,获得积分10
1秒前
3秒前
3秒前
顺利的绿柏发布了新的文献求助100
3秒前
chengmaoning完成签到,获得积分10
4秒前
柒月小鱼发布了新的文献求助10
4秒前
清新的寄风完成签到 ,获得积分10
5秒前
王佳慧发布了新的文献求助10
6秒前
8秒前
天天快乐应助buzuogaoxiaonv采纳,获得10
8秒前
qqq发布了新的文献求助10
9秒前
314gjj发布了新的文献求助10
10秒前
12秒前
13秒前
科研通AI5应助小子弹采纳,获得10
14秒前
Gauss应助xff采纳,获得30
15秒前
贝林7完成签到,获得积分10
16秒前
17秒前
胡萝卜发布了新的文献求助10
17秒前
田様应助热心市民王先生采纳,获得10
18秒前
19秒前
搞怪忆彤完成签到,获得积分10
20秒前
传奇3应助院士候选人之一采纳,获得10
21秒前
Vincent完成签到,获得积分10
21秒前
Hyperme发布了新的文献求助10
22秒前
23秒前
23秒前
taotao发布了新的文献求助10
24秒前
魏冰完成签到,获得积分10
24秒前
25秒前
无聊的月饼完成签到 ,获得积分10
25秒前
wonderting完成签到,获得积分10
26秒前
小二郎应助如烈火如止水采纳,获得10
27秒前
李爱国应助xvping采纳,获得10
27秒前
充电宝应助胡萝卜采纳,获得10
28秒前
院士候选人之一完成签到,获得积分10
28秒前
29秒前
魏冰发布了新的文献求助30
30秒前
ceeray23应助喜悦依白采纳,获得10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740023
求助须知:如何正确求助?哪些是违规求助? 3283017
关于积分的说明 10033303
捐赠科研通 2999877
什么是DOI,文献DOI怎么找? 1646203
邀请新用户注册赠送积分活动 783395
科研通“疑难数据库(出版商)”最低求助积分说明 750356