Reducing Navigators in Free-Breathing Abdominal MRI via Temporal Interpolation Using Convolutional Neural Networks

插值(计算机图形学) 计算机科学 卷积神经网络 人工智能 计算机视觉 线性插值 磁共振成像 模式识别(心理学) 运动(物理) 医学 放射科
作者
Neerav Karani,Christine Tanner,Sebastian Kozerke,Ender Konukoğlu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (10): 2333-2343 被引量:5
标识
DOI:10.1109/tmi.2018.2831442
摘要

Navigated 2-D multi-slice dynamic magnetic resonance imaging (MRI) acquisitions are essential for MR guided therapies. This technique yields time-resolved volumetric images during free-breathing, which are ideal for visualizing and quantifying breathing induced motion. To achieve this, navigated dynamic imaging requires acquiring multiple navigator slices. Reducing the number of navigator slices would allow for acquiring more data slices in the same time, and hence, increasing through-plane resolution or alternatively the overall acquisition time can be reduced while keeping resolution unchanged. To this end, we propose temporal interpolation of navigator slices using convolutional neural networks (CNNs). Our goal is to acquire fewer navigators and replace the missing ones with interpolation. We evaluate the proposed method on abdominal navigated dynamic MRI sequences acquired from 14 subjects. Investigations with several CNN architectures and training loss functions show favorable results for cost and a simple feed-forward network with no skip connections. When compared with interpolation by non-linear registration, the proposed method achieves higher interpolation accuracy on average as quantified in terms of root mean square error and residual motion. Analysis of the differences shows that the better performance is due to more accurate interpolation at peak exhalation and inhalation positions. Furthermore, the CNN-based approach requires substantially lower execution times than that of the registration-based method. At last, experiments on dynamic volume reconstruction reveal minimal differences between reconstructions with acquired and interpolated navigator slices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kaka完成签到 ,获得积分10
1秒前
2秒前
CodeCraft应助汪宇采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
科目三应助mu采纳,获得10
4秒前
爱听歌小蚂蚁关注了科研通微信公众号
4秒前
一种信仰完成签到 ,获得积分10
4秒前
4秒前
顾矜应助淡淡的觅松采纳,获得10
5秒前
8秒前
mount完成签到,获得积分10
10秒前
斯文败类应助long采纳,获得10
11秒前
12秒前
Orange应助作业对不起采纳,获得10
13秒前
13秒前
16秒前
mu发布了新的文献求助10
17秒前
风清扬应助科研通管家采纳,获得30
18秒前
蒹葭苍苍应助科研通管家采纳,获得10
19秒前
风清扬应助科研通管家采纳,获得30
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
蒹葭苍苍应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
风清扬应助科研通管家采纳,获得30
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
风清扬应助科研通管家采纳,获得30
19秒前
小郭子应助科研通管家采纳,获得10
19秒前
小郭子应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
小郭子应助科研通管家采纳,获得10
19秒前
19秒前
小郭子应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896