Reducing Navigators in Free-Breathing Abdominal MRI via Temporal Interpolation Using Convolutional Neural Networks

插值(计算机图形学) 计算机科学 卷积神经网络 人工智能 计算机视觉 线性插值 磁共振成像 模式识别(心理学) 运动(物理) 医学 放射科
作者
Neerav Karani,Christine Tanner,Sebastian Kozerke,Ender Konukoğlu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (10): 2333-2343 被引量:5
标识
DOI:10.1109/tmi.2018.2831442
摘要

Navigated 2-D multi-slice dynamic magnetic resonance imaging (MRI) acquisitions are essential for MR guided therapies. This technique yields time-resolved volumetric images during free-breathing, which are ideal for visualizing and quantifying breathing induced motion. To achieve this, navigated dynamic imaging requires acquiring multiple navigator slices. Reducing the number of navigator slices would allow for acquiring more data slices in the same time, and hence, increasing through-plane resolution or alternatively the overall acquisition time can be reduced while keeping resolution unchanged. To this end, we propose temporal interpolation of navigator slices using convolutional neural networks (CNNs). Our goal is to acquire fewer navigators and replace the missing ones with interpolation. We evaluate the proposed method on abdominal navigated dynamic MRI sequences acquired from 14 subjects. Investigations with several CNN architectures and training loss functions show favorable results for cost and a simple feed-forward network with no skip connections. When compared with interpolation by non-linear registration, the proposed method achieves higher interpolation accuracy on average as quantified in terms of root mean square error and residual motion. Analysis of the differences shows that the better performance is due to more accurate interpolation at peak exhalation and inhalation positions. Furthermore, the CNN-based approach requires substantially lower execution times than that of the registration-based method. At last, experiments on dynamic volume reconstruction reveal minimal differences between reconstructions with acquired and interpolated navigator slices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助自己采纳,获得10
刚刚
小米粥完成签到,获得积分10
刚刚
刚刚
丘比特应助SZY采纳,获得10
刚刚
刚刚
阳光BOY完成签到,获得积分10
刚刚
zz完成签到,获得积分10
1秒前
FYJY完成签到,获得积分10
1秒前
1秒前
Little2完成签到,获得积分10
1秒前
wanci应助文舒采纳,获得10
1秒前
兴奋鼠标完成签到 ,获得积分10
1秒前
1秒前
医路上的小学生完成签到,获得积分10
2秒前
i十七发布了新的文献求助20
2秒前
gaomeizhen完成签到,获得积分10
2秒前
RenHP完成签到,获得积分10
3秒前
yecheng发布了新的文献求助10
3秒前
3秒前
孔问筠完成签到,获得积分0
4秒前
4秒前
刘小刘认真读研关注了科研通微信公众号
4秒前
yanjiusheng完成签到,获得积分10
5秒前
Owen应助iwww采纳,获得30
5秒前
Sun发布了新的文献求助10
5秒前
ssa11sj完成签到,获得积分10
6秒前
TrishX完成签到 ,获得积分10
6秒前
6秒前
BR发布了新的文献求助10
6秒前
eye完成签到,获得积分10
6秒前
纯真曼凝发布了新的文献求助10
6秒前
7秒前
7秒前
科学飞龙完成签到,获得积分10
7秒前
cc发布了新的文献求助10
7秒前
yecheng完成签到,获得积分10
8秒前
土亢土亢土应助悟空采纳,获得20
8秒前
生生完成签到,获得积分10
9秒前
Eurus发布了新的文献求助10
9秒前
随便取完成签到 ,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044