亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reducing Navigators in Free-Breathing Abdominal MRI via Temporal Interpolation Using Convolutional Neural Networks

插值(计算机图形学) 计算机科学 卷积神经网络 人工智能 计算机视觉 线性插值 磁共振成像 模式识别(心理学) 运动(物理) 医学 放射科
作者
Neerav Karani,Christine Tanner,Sebastian Kozerke,Ender Konukoğlu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (10): 2333-2343 被引量:5
标识
DOI:10.1109/tmi.2018.2831442
摘要

Navigated 2-D multi-slice dynamic magnetic resonance imaging (MRI) acquisitions are essential for MR guided therapies. This technique yields time-resolved volumetric images during free-breathing, which are ideal for visualizing and quantifying breathing induced motion. To achieve this, navigated dynamic imaging requires acquiring multiple navigator slices. Reducing the number of navigator slices would allow for acquiring more data slices in the same time, and hence, increasing through-plane resolution or alternatively the overall acquisition time can be reduced while keeping resolution unchanged. To this end, we propose temporal interpolation of navigator slices using convolutional neural networks (CNNs). Our goal is to acquire fewer navigators and replace the missing ones with interpolation. We evaluate the proposed method on abdominal navigated dynamic MRI sequences acquired from 14 subjects. Investigations with several CNN architectures and training loss functions show favorable results for cost and a simple feed-forward network with no skip connections. When compared with interpolation by non-linear registration, the proposed method achieves higher interpolation accuracy on average as quantified in terms of root mean square error and residual motion. Analysis of the differences shows that the better performance is due to more accurate interpolation at peak exhalation and inhalation positions. Furthermore, the CNN-based approach requires substantially lower execution times than that of the registration-based method. At last, experiments on dynamic volume reconstruction reveal minimal differences between reconstructions with acquired and interpolated navigator slices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一二完成签到 ,获得积分10
1秒前
GGBond完成签到 ,获得积分10
2秒前
happy璇完成签到 ,获得积分10
4秒前
惜海发布了新的文献求助10
5秒前
感动的剑鬼关注了科研通微信公众号
13秒前
wtian完成签到,获得积分10
16秒前
惜海完成签到,获得积分20
18秒前
不知终日梦为鱼完成签到,获得积分10
21秒前
21秒前
23秒前
24秒前
Ava应助科研通管家采纳,获得10
24秒前
null应助科研通管家采纳,获得10
24秒前
null应助科研通管家采纳,获得10
24秒前
null应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
Ava应助科研通管家采纳,获得10
24秒前
悠悠应助科研通管家采纳,获得30
24秒前
25秒前
25秒前
luckydog发布了新的文献求助10
31秒前
清爽的凌晴完成签到 ,获得积分10
32秒前
顺颂时祺发布了新的文献求助10
33秒前
leeSongha完成签到 ,获得积分10
43秒前
希望天下0贩的0应助sfwrbh采纳,获得10
44秒前
45秒前
yzq完成签到 ,获得积分10
48秒前
ZH完成签到 ,获得积分10
51秒前
51秒前
大模型应助南街楼采纳,获得10
51秒前
51秒前
51秒前
心随以动完成签到 ,获得积分10
52秒前
sfwrbh完成签到,获得积分10
56秒前
57秒前
57秒前
57秒前
修辛完成签到 ,获得积分10
1分钟前
感动的剑鬼完成签到,获得积分10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746390
求助须知:如何正确求助?哪些是违规求助? 5433407
关于积分的说明 15355310
捐赠科研通 4886348
什么是DOI,文献DOI怎么找? 2627185
邀请新用户注册赠送积分活动 1575657
关于科研通互助平台的介绍 1532411