亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reducing Navigators in Free-Breathing Abdominal MRI via Temporal Interpolation Using Convolutional Neural Networks

插值(计算机图形学) 计算机科学 卷积神经网络 人工智能 计算机视觉 线性插值 磁共振成像 模式识别(心理学) 运动(物理) 医学 放射科
作者
Neerav Karani,Christine Tanner,Sebastian Kozerke,Ender Konukoğlu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (10): 2333-2343 被引量:5
标识
DOI:10.1109/tmi.2018.2831442
摘要

Navigated 2-D multi-slice dynamic magnetic resonance imaging (MRI) acquisitions are essential for MR guided therapies. This technique yields time-resolved volumetric images during free-breathing, which are ideal for visualizing and quantifying breathing induced motion. To achieve this, navigated dynamic imaging requires acquiring multiple navigator slices. Reducing the number of navigator slices would allow for acquiring more data slices in the same time, and hence, increasing through-plane resolution or alternatively the overall acquisition time can be reduced while keeping resolution unchanged. To this end, we propose temporal interpolation of navigator slices using convolutional neural networks (CNNs). Our goal is to acquire fewer navigators and replace the missing ones with interpolation. We evaluate the proposed method on abdominal navigated dynamic MRI sequences acquired from 14 subjects. Investigations with several CNN architectures and training loss functions show favorable results for cost and a simple feed-forward network with no skip connections. When compared with interpolation by non-linear registration, the proposed method achieves higher interpolation accuracy on average as quantified in terms of root mean square error and residual motion. Analysis of the differences shows that the better performance is due to more accurate interpolation at peak exhalation and inhalation positions. Furthermore, the CNN-based approach requires substantially lower execution times than that of the registration-based method. At last, experiments on dynamic volume reconstruction reveal minimal differences between reconstructions with acquired and interpolated navigator slices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wbs13521完成签到,获得积分10
3秒前
4秒前
9秒前
KTaoL发布了新的文献求助10
10秒前
12秒前
QI发布了新的文献求助10
14秒前
哇呀呀完成签到 ,获得积分10
18秒前
21秒前
范曼冬发布了新的文献求助10
24秒前
28秒前
Luuuuu发布了新的文献求助10
33秒前
37秒前
酷波er应助范曼冬采纳,获得10
41秒前
42秒前
天天快乐应助KTaoL采纳,获得10
44秒前
FAN完成签到,获得积分10
44秒前
44秒前
于驳完成签到,获得积分10
44秒前
蓼花完成签到 ,获得积分10
45秒前
王倩发布了新的文献求助10
46秒前
雪白元风完成签到 ,获得积分10
47秒前
47秒前
英姑应助QI采纳,获得10
47秒前
Arjun应助zzz采纳,获得10
48秒前
52秒前
完美世界应助superV采纳,获得10
54秒前
泡菜鱼完成签到 ,获得积分10
55秒前
56秒前
keplek完成签到 ,获得积分10
56秒前
艺玲发布了新的文献求助10
58秒前
58秒前
QI发布了新的文献求助10
1分钟前
1分钟前
汉堡包应助甜甜的契采纳,获得10
1分钟前
千纸鹤完成签到 ,获得积分10
1分钟前
烟花应助QI采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
敏感的雪兰完成签到,获得积分10
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261507
求助须知:如何正确求助?哪些是违规求助? 2902266
关于积分的说明 8319539
捐赠科研通 2572204
什么是DOI,文献DOI怎么找? 1397447
科研通“疑难数据库(出版商)”最低求助积分说明 653721
邀请新用户注册赠送积分活动 632223