清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Assembly of Stable Human Type I and III Collagen Molecules from Hydroxylated Recombinant Chains in the Yeast Pichia pastoris

毕赤酵母 重组DNA 酵母 化学 毕赤酵母 生物化学 细胞生物学 生物 基因
作者
Outi Pakkanen,Eija‐Riitta Hämäläinen,Kari I. Kivirikko,Johanna Myllyharju
出处
期刊:Journal of Biological Chemistry [Elsevier BV]
卷期号:278 (34): 32478-32483 被引量:60
标识
DOI:10.1074/jbc.m304405200
摘要

The C-propeptides of the proα chains of type I and type III procollagens are believed to be essential for correct chain recognition and chain assembly in these molecules. We studied here whether the 30-kDa C-propeptides of the human pCα1(I), pCα2(I), and pCα1(III) chains, i.e. proα chains lacking their N-propeptides, can be replaced by foldon, a 29-amino acid sequence normally located at the C terminus of the polypeptide chains in the bacteriophage T4 fibritin. The αfoldon chains were expressed in Pichia pastoris cells that also expressed the two types of subunit of human prolyl 4-hydroxylase; the foldon domain was subsequently removed by pepsin treatment, which also digests non-triple helical collagen chains, whereas triple helical collagen molecules are resistant to it. The foldon domain was found to be very effective in chain assembly, as expression of the α1(I)foldon or α1(III)foldon chains gave about 2.5–3-fold the amount of pepsin-resistant type I or type III collagen homotrimers relative to those obtained using the authentic C-propeptides. In contrast, expression of chains with no oligomerization domain led to very low levels of pepsin-resistant molecules. Expression of α2(I)foldon chains gave no pepsin-resistant molecules at all, indicating that in addition to control at the level of the C-propeptide other restrictions at the level of the collagen domain exist that prevent the formation of stable [α2(I)]3 molecules. Co-expression of α1(I)foldon and α2(I)foldon chains led to an efficient assembly of heterotrimeric molecules, their amounts being about 2-fold those obtained with the authentic C-propeptides and the α1(I) to α2(I) ratio being 1.91 ± 0.31 (S.D.). As the foldon sequence contains no information for chain recognition, our data indicate that chain assembly is influenced not only by the C-terminal oligomerization domain but also by determinants present in the α chain domains. The C-propeptides of the proα chains of type I and type III procollagens are believed to be essential for correct chain recognition and chain assembly in these molecules. We studied here whether the 30-kDa C-propeptides of the human pCα1(I), pCα2(I), and pCα1(III) chains, i.e. proα chains lacking their N-propeptides, can be replaced by foldon, a 29-amino acid sequence normally located at the C terminus of the polypeptide chains in the bacteriophage T4 fibritin. The αfoldon chains were expressed in Pichia pastoris cells that also expressed the two types of subunit of human prolyl 4-hydroxylase; the foldon domain was subsequently removed by pepsin treatment, which also digests non-triple helical collagen chains, whereas triple helical collagen molecules are resistant to it. The foldon domain was found to be very effective in chain assembly, as expression of the α1(I)foldon or α1(III)foldon chains gave about 2.5–3-fold the amount of pepsin-resistant type I or type III collagen homotrimers relative to those obtained using the authentic C-propeptides. In contrast, expression of chains with no oligomerization domain led to very low levels of pepsin-resistant molecules. Expression of α2(I)foldon chains gave no pepsin-resistant molecules at all, indicating that in addition to control at the level of the C-propeptide other restrictions at the level of the collagen domain exist that prevent the formation of stable [α2(I)]3 molecules. Co-expression of α1(I)foldon and α2(I)foldon chains led to an efficient assembly of heterotrimeric molecules, their amounts being about 2-fold those obtained with the authentic C-propeptides and the α1(I) to α2(I) ratio being 1.91 ± 0.31 (S.D.). As the foldon sequence contains no information for chain recognition, our data indicate that chain assembly is influenced not only by the C-terminal oligomerization domain but also by determinants present in the α chain domains. The collagen superfamily of proteins includes more than 20 types of collagen and more than 15 additional proteins that have collagen-like domains. All collagen molecules consist of three polypeptide chains, called α chains, 1The abbreviations used are: α chain, a collagen polypeptide chain; proα chain, a procollagen polypeptide chain; pCα chain, a procollagen polypeptide lacking the N-propeptide; αfoldon chain, a pCα chain with the C-propeptide replaced by the foldon domain.1The abbreviations used are: α chain, a collagen polypeptide chain; proα chain, a procollagen polypeptide chain; pCα chain, a procollagen polypeptide lacking the N-propeptide; αfoldon chain, a pCα chain with the C-propeptide replaced by the foldon domain. that are coiled around each other into a triple helix and contain the triplet sequence -Gly-X-Y-, in which the Y position amino acid is often 4-hydroxyproline. The most abundant collagens form fibrils and are therefore known as fibril-forming collagens, whereas others form other kinds of supramolecular structures. The molecules of the most abundant fibril-forming collagen, type I, consist of two α1(I) chains and one α2(I) chain, whereas the molecules of type III collagen are [α1(III)]3 homotrimers. In addition to the type I collagen heterotrimer, most tissues also contain a small amount of type I collagen with a chain composition of [α1(I)]3, known as the type I collagen homotrimer (for reviews, see Refs. 1Kadler K. Protein Profile. 1995; 2: 491-619PubMed Google Scholar, 2Prockop D.J. Kivirikko K.I. Annu. Rev. Biochem. 1995; 64: 403-434Crossref PubMed Scopus (1355) Google Scholar, 3Bateman J.F. Lamandé S.R. Ramshaw J.A.M. Comper W.D. Extracellular Matrix. Vol. 2. Harwood, Amsterdam1996: 22-67Google Scholar, 4Myllyharju J. Kivirikko K.I. Ann. Med. 2001; 33: 7-21Crossref PubMed Scopus (534) Google Scholar). The fibril-forming collagens are synthesized as procollagen molecules with N- and C-terminal propeptides. Chain assembly begins with association of the three C-propeptides through a process directed by their structures (2Prockop D.J. Kivirikko K.I. Annu. Rev. Biochem. 1995; 64: 403-434Crossref PubMed Scopus (1355) Google Scholar, 5McLaughlin S.H. Bulleid N.J. Matrix Biol. 1998; 16: 369-377Crossref PubMed Scopus (97) Google Scholar). Renaturation experiments with individual type I collagen α chains that lack any propeptides have indicated, however, that the chains form both [α(I)]2α2(I) heterotrimers and [α1(I)]3 homotrimers, although the process is very slow and the T m values of the molecules formed are lower than of those present in vivo (6Tkocz C. Kühn K. Eur. J. Biochem. 1969; 7: 454-462Crossref PubMed Scopus (87) Google Scholar, 7Leikina E. Mertts M.V. Leikin S. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 1314-1318Crossref PubMed Scopus (439) Google Scholar). Based on these findings and numerous subsequent studies carried out in a large variety of biological systems over a period of more than 25 years, the C-propeptides are now believed to be essential for correct chain recognition and to play a crucial role in chain assembly in vivo (2Prockop D.J. Kivirikko K.I. Annu. Rev. Biochem. 1995; 64: 403-434Crossref PubMed Scopus (1355) Google Scholar, 5McLaughlin S.H. Bulleid N.J. Matrix Biol. 1998; 16: 369-377Crossref PubMed Scopus (97) Google Scholar, 8Lees J.F. Tasab M. Bulleid N.J. EMBO J. 1997; 16: 908-916Crossref PubMed Scopus (123) Google Scholar). Most studies of collagen synthesis have used vertebrate cells, which usually possess sufficient levels of all the specific cotranslational and posttranslational enzymes needed for collagen processing. In recent years experiments have also been performed using recombinant expression in cultured insect cells (9Lamberg A. Helaakoski T. Myllyharju J. Peltonen S. Notbohm H. Pihlajaniemi T. Kivirikko K.I. J. Biol. Chem. 1996; 271: 11988-11995Abstract Full Text Full Text PDF PubMed Scopus (107) Google Scholar, 10Myllyharju J. Lamberg A. Notbohm H. Fietzek P.P. Pihlajaniemi T. Kivirikko K.I. J. Biol. Chem. 1997; 272: 21824-21830Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar, 11Nokelainen M. Helaakoski T. Myllyharju J. Notbohm H. Pihlajaniemi T. Fietzek P.P. Kivirikko K.I. Matrix Biol. 1998; 16: 329-338Crossref PubMed Scopus (49) Google Scholar), yeasts (12Vuorela A. Myllyharju J. Nissi R. Pihlajaniemi T. Kivirikko K.I. EMBO J. 1997; 16: 6702-6712Crossref PubMed Scopus (128) Google Scholar, 13Toman P.D. Chisholm G. McMullin H. Giere L.M. Olsen D.R. Kovach R.J. Leigh S.D. Fong B.E. Chang R. Daniels G.A. Berg R.A. Hitzeman R.A. J. Biol. Chem. 2000; 275: 23303-23309Abstract Full Text Full Text PDF PubMed Scopus (99) Google Scholar, 14Nokelainen M. Tu H. Vuorela A. Notbohm H. Kivirikko K.I. Myllyharju J. Yeast. 2001; 18: 797-806Crossref PubMed Scopus (85) Google Scholar) and plants (15Merle C. Perret S. Lacour T. Jonval V. Hudaverdian S. Garrone R. Ruggiero F. Theisen M. FEBS Lett. 2002; 27: 114-118Crossref Scopus (87) Google Scholar). These cells have been shown to assemble partially (13Toman P.D. Chisholm G. McMullin H. Giere L.M. Olsen D.R. Kovach R.J. Leigh S.D. Fong B.E. Chang R. Daniels G.A. Berg R.A. Hitzeman R.A. J. Biol. Chem. 2000; 275: 23303-23309Abstract Full Text Full Text PDF PubMed Scopus (99) Google Scholar, 15Merle C. Perret S. Lacour T. Jonval V. Hudaverdian S. Garrone R. Ruggiero F. Theisen M. FEBS Lett. 2002; 27: 114-118Crossref Scopus (87) Google Scholar) or fully (9Lamberg A. Helaakoski T. Myllyharju J. Peltonen S. Notbohm H. Pihlajaniemi T. Kivirikko K.I. J. Biol. Chem. 1996; 271: 11988-11995Abstract Full Text Full Text PDF PubMed Scopus (107) Google Scholar, 10Myllyharju J. Lamberg A. Notbohm H. Fietzek P.P. Pihlajaniemi T. Kivirikko K.I. J. Biol. Chem. 1997; 272: 21824-21830Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar, 11Nokelainen M. Helaakoski T. Myllyharju J. Notbohm H. Pihlajaniemi T. Fietzek P.P. Kivirikko K.I. Matrix Biol. 1998; 16: 329-338Crossref PubMed Scopus (49) Google Scholar, 12Vuorela A. Myllyharju J. Nissi R. Pihlajaniemi T. Kivirikko K.I. EMBO J. 1997; 16: 6702-6712Crossref PubMed Scopus (128) Google Scholar, 14Nokelainen M. Tu H. Vuorela A. Notbohm H. Kivirikko K.I. Myllyharju J. Yeast. 2001; 18: 797-806Crossref PubMed Scopus (85) Google Scholar) hydroxylated recombinant collagen chains into molecules with partially (13Toman P.D. Chisholm G. McMullin H. Giere L.M. Olsen D.R. Kovach R.J. Leigh S.D. Fong B.E. Chang R. Daniels G.A. Berg R.A. Hitzeman R.A. J. Biol. Chem. 2000; 275: 23303-23309Abstract Full Text Full Text PDF PubMed Scopus (99) Google Scholar, 15Merle C. Perret S. Lacour T. Jonval V. Hudaverdian S. Garrone R. Ruggiero F. Theisen M. FEBS Lett. 2002; 27: 114-118Crossref Scopus (87) Google Scholar) or fully (9Lamberg A. Helaakoski T. Myllyharju J. Peltonen S. Notbohm H. Pihlajaniemi T. Kivirikko K.I. J. Biol. Chem. 1996; 271: 11988-11995Abstract Full Text Full Text PDF PubMed Scopus (107) Google Scholar, 10Myllyharju J. Lamberg A. Notbohm H. Fietzek P.P. Pihlajaniemi T. Kivirikko K.I. J. Biol. Chem. 1997; 272: 21824-21830Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar, 11Nokelainen M. Helaakoski T. Myllyharju J. Notbohm H. Pihlajaniemi T. Fietzek P.P. Kivirikko K.I. Matrix Biol. 1998; 16: 329-338Crossref PubMed Scopus (49) Google Scholar, 12Vuorela A. Myllyharju J. Nissi R. Pihlajaniemi T. Kivirikko K.I. EMBO J. 1997; 16: 6702-6712Crossref PubMed Scopus (128) Google Scholar, 14Nokelainen M. Tu H. Vuorela A. Notbohm H. Kivirikko K.I. Myllyharju J. Yeast. 2001; 18: 797-806Crossref PubMed Scopus (85) Google Scholar) stable triple helices, provided that they co-express the two types of subunit of a recombinant prolyl 4-hydroxylase. This key enzyme of collagen synthesis is an α2β2 tetramer in vertebrates (16Kivirikko K.I. Myllyharju J. Matrix Biol. 1998; 16: 357-368Crossref PubMed Scopus (233) Google Scholar, 17Kivirikko K.I. Pihlajaniemi T. Adv. Enzymol. Relat. Areas Mol. Biol. 1998; 72: 325-400PubMed Google Scholar, 18Myllyharju J. Matrix Biol. 2003; 22: 15-24Crossref PubMed Scopus (317) Google Scholar). Most of the triple helical collagen molecules assembled in insect cells, yeasts, and plants are not secreted (9Lamberg A. Helaakoski T. Myllyharju J. Peltonen S. Notbohm H. Pihlajaniemi T. Kivirikko K.I. J. Biol. Chem. 1996; 271: 11988-11995Abstract Full Text Full Text PDF PubMed Scopus (107) Google Scholar, 10Myllyharju J. Lamberg A. Notbohm H. Fietzek P.P. Pihlajaniemi T. Kivirikko K.I. J. Biol. Chem. 1997; 272: 21824-21830Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar, 11Nokelainen M. Helaakoski T. Myllyharju J. Notbohm H. Pihlajaniemi T. Fietzek P.P. Kivirikko K.I. Matrix Biol. 1998; 16: 329-338Crossref PubMed Scopus (49) Google Scholar, 12Vuorela A. Myllyharju J. Nissi R. Pihlajaniemi T. Kivirikko K.I. EMBO J. 1997; 16: 6702-6712Crossref PubMed Scopus (128) Google Scholar, 13Toman P.D. Chisholm G. McMullin H. Giere L.M. Olsen D.R. Kovach R.J. Leigh S.D. Fong B.E. Chang R. Daniels G.A. Berg R.A. Hitzeman R.A. J. Biol. Chem. 2000; 275: 23303-23309Abstract Full Text Full Text PDF PubMed Scopus (99) Google Scholar, 14Nokelainen M. Tu H. Vuorela A. Notbohm H. Kivirikko K.I. Myllyharju J. Yeast. 2001; 18: 797-806Crossref PubMed Scopus (85) Google Scholar, 15Merle C. Perret S. Lacour T. Jonval V. Hudaverdian S. Garrone R. Ruggiero F. Theisen M. FEBS Lett. 2002; 27: 114-118Crossref Scopus (87) Google Scholar) but accumulate within the endoplasmic reticulum (19Keizer-Gunnink I. Vuorela A. Myllyharju J. Pihlajaniemi T. Kivirikko K.I. Veenhuis M. Matrix Biol. 2000; 19: 29-36Crossref PubMed Scopus (22) Google Scholar). Studies of these systems have confirmed that the N-propeptides are not required for the assembly of triple helical molecules, as they can be swapped between collagen types (10Myllyharju J. Lamberg A. Notbohm H. Fietzek P.P. Pihlajaniemi T. Kivirikko K.I. J. Biol. Chem. 1997; 272: 21824-21830Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar, 11Nokelainen M. Helaakoski T. Myllyharju J. Notbohm H. Pihlajaniemi T. Fietzek P.P. Kivirikko K.I. Matrix Biol. 1998; 16: 329-338Crossref PubMed Scopus (49) Google Scholar) or omitted (14Nokelainen M. Tu H. Vuorela A. Notbohm H. Kivirikko K.I. Myllyharju J. Yeast. 2001; 18: 797-806Crossref PubMed Scopus (85) Google Scholar, 15Merle C. Perret S. Lacour T. Jonval V. Hudaverdian S. Garrone R. Ruggiero F. Theisen M. FEBS Lett. 2002; 27: 114-118Crossref Scopus (87) Google Scholar, 20Olsen D.R. Leigh S.D. Chang R. McMullin H. Ong W. Tai E. Chisholm G. Birk D.E. Berg R.A. Hitzeman R.A. Toman P.D. J. Biol. Chem. 2001; 276: 24038-24043Abstract Full Text Full Text PDF PubMed Scopus (52) Google Scholar). A recent study reported, highly surprisingly, that assembly of triple helical recombinant type I collagen molecules from partially hydroxylated α chains in the yeast Saccharomyces cerevisiae does not even require the C-propeptides (20Olsen D.R. Leigh S.D. Chang R. McMullin H. Ong W. Tai E. Chisholm G. Birk D.E. Berg R.A. Hitzeman R.A. Toman P.D. J. Biol. Chem. 2001; 276: 24038-24043Abstract Full Text Full Text PDF PubMed Scopus (52) Google Scholar). The triple helical molecules had an α1(I) to α2(I) chain ratio of 5:1, however, suggesting that they consist of mixtures of [α1(I)]2α2(I) heterotrimers and [α1(I)]3 homotrimers (20Olsen D.R. Leigh S.D. Chang R. McMullin H. Ong W. Tai E. Chisholm G. Birk D.E. Berg R.A. Hitzeman R.A. Toman P.D. J. Biol. Chem. 2001; 276: 24038-24043Abstract Full Text Full Text PDF PubMed Scopus (52) Google Scholar). In the present work we have studied whether fully hydroxylated recombinant human type I collagen α chains lacking C-propeptides can assemble effectively into triple helical molecules in the yeast Pichia pastoris when it co-expresses the two types of subunits of a recombinant human prolyl 4-hydroxylase (12Vuorela A. Myllyharju J. Nissi R. Pihlajaniemi T. Kivirikko K.I. EMBO J. 1997; 16: 6702-6712Crossref PubMed Scopus (128) Google Scholar, 14Nokelainen M. Tu H. Vuorela A. Notbohm H. Kivirikko K.I. Myllyharju J. Yeast. 2001; 18: 797-806Crossref PubMed Scopus (85) Google Scholar). As the collagen domains of the α chains of type III collagen, unlike those of type I, contain two cysteine residues at their C-terminal ends, which are involved in the formation of interchain disulfide bonds (see Ref. 21Bulleid N.J. Wilson R. Lees J.F. Biochem. J. 1996; 317: 195-202Crossref PubMed Scopus (62) Google Scholar), we also determined whether type III collagen α chains lacking their C-propeptides would be assembled more effectively than those of type I. One major aspect studied here was whether the 30-kDa C-propeptides of the proα1(I), proα2(I), or proα1(III) chains could be replaced by foldon, a 29-amino acid peptide that is normally located at the C terminus of the polypeptide chains in the bacteriophage T4 fibritin, a three-stranded α helical coiled-coil protein, and appears to be essential for the assembly of the fibritin molecule (22Tao Y. Strelkov S.V. Mesyanzhinov V. Rossmann M.G. Structure. 1997; 5: 789-798Abstract Full Text Full Text PDF PubMed Scopus (181) Google Scholar, 23Letarov A.V. Londer Y.Y. Boudko S.P. Mesyanzhinov V.V. Biochemistry (Moscow). 1999; 64: 817-823PubMed Google Scholar, 24Boudko S.P. Londer Y.Y. Letarov A.V. Sernova N.V. Engel J. Mesyanzhinov V.V. Eur. J. Biochem. 2002; 269: 833-841Crossref PubMed Scopus (32) Google Scholar). The addition of foldon to the C terminus of the peptide (Pro-Pro-Gly)10 has been shown to markedly increase the T m of the triple helical 4-hydroxyproline-free molecules that are formed from these peptides even in the absence of foldon (25Frank S. Kammerer R.A. Mechling D. Schulthess T. Landwehr R. Bann J. Guo Y Lustig A. Bächinger H.P. Engel J. J. Mol. Biol. 2001; 308: 1081-1089Crossref PubMed Scopus (161) Google Scholar, 26Boudko S. Frank S. Kammerer R.A. Stetefeld J. Schulthess T. Landwehr R. Lustig A. Bächinger H.P. Engel J. J. Mol. Biol. 2002; 317: 459-470Crossref PubMed Scopus (92) Google Scholar). No data are available to indicate whether foldon could be used to replace the C-propeptides of proα chains in the assembly of stable triple helical collagen molecules. We were unable to confirm the effective assembly of triple helical collagen molecules from α chains lacking the C-propeptides in yeast cells (20Olsen D.R. Leigh S.D. Chang R. McMullin H. Ong W. Tai E. Chisholm G. Birk D.E. Berg R.A. Hitzeman R.A. Toman P.D. J. Biol. Chem. 2001; 276: 24038-24043Abstract Full Text Full Text PDF PubMed Scopus (52) Google Scholar), at least in P. pastoris, but it was clear that the C-propeptides could be replaced by the foldon sequence. Expression of α1(I)foldon or α1(III)foldon chains led to an even more efficient assembly of homotrimeric molecules with stable triple helices than in the cases of chains expressed with their own C-propeptides. Furthermore, co-expression of the α1(I)foldon and α2(I)foldon chains led to the effective formation of type I collagen heterotrimers with the correct 2:1 chain ratio, indicating that the chain composition is determined not only by the C-terminal oligomerization domain but also by determinants present in the collagen domain of the polypeptide chains, at least in the case of very small oligomerization domains such as foldon. P. pastoris Expression Vectors and Generation of Recombinant Strains—The P. pastoris host strain yJC300 (his4, arg4, ade1) and the expression vectors pBLADESX and pBLARGIX (27Cereghino G.P. Cereghino J.L. Sunga A.J. Johnson M.A. Lim M. Gleeson M.A. Cregg J.M. Gene. 2001; 263: 159-169Crossref PubMed Scopus (83) Google Scholar) were gifts from Dr. James Cregg, (Keck Graduate Institute of Applied Life Sciences), and the vectors pPIC3K, pPICZB, and pPICZαA were from Invitrogen. The recombinant strains were generated by the electroporation method according to the manufacturer's instructions (Invitrogen (32InvitrogenManual of Methods for Expression of Recombinant Proteins in Pichia pastoris. Version M, Invitrogen, Carlsbad, CA2002Google Scholar)). The recombinant strains were of the methanol utilization-plus phenotype. PCα1(I), α1(I)foldon, and α1(I) Strains—A cDNA for the β subunit of human prolyl 4-hydroxylase lacking the signal sequence and flanked by EcoRI restriction sites (12Vuorela A. Myllyharju J. Nissi R. Pihlajaniemi T. Kivirikko K.I. EMBO J. 1997; 16: 6702-6712Crossref PubMed Scopus (128) Google Scholar) was cloned into pPICZαA in frame with the S. cerevisiae α mating factor (αMF) pre-pro sequence. The expression cassette encoding the αMF-β polypeptide was digested from pPICZαAβ with BamHI-BglII and cloned into pBLADESX. To generate a recombinant P. pastoris strain expressing human prolyl 4-hydroxylase α2β2 tetramers, the pBLARGIXα (14Nokelainen M. Tu H. Vuorela A. Notbohm H. Kivirikko K.I. Myllyharju J. Yeast. 2001; 18: 797-806Crossref PubMed Scopus (85) Google Scholar) and pBLADESXβ were linearized with HincII and SpeI, respectively, and cotransformed into the yJC300 strain. The resulting strain was named ArgαAdeβ,his–. A P. pastoris expression cassette encoding human type I pCα1 chains (procollagen chains lacking their N-propeptides) was digested from pPICZBpCα1(I) (14Nokelainen M. Tu H. Vuorela A. Notbohm H. Kivirikko K.I. Myllyharju J. Yeast. 2001; 18: 797-806Crossref PubMed Scopus (85) Google Scholar) with PmeI-NotI and cloned into pPIC3K to generate pPIC3KpCα1(I). A cDNA coding for the 29-amino acid foldon domain of fibritin (22Tao Y. Strelkov S.V. Mesyanzhinov V. Rossmann M.G. Structure. 1997; 5: 789-798Abstract Full Text Full Text PDF PubMed Scopus (181) Google Scholar, 23Letarov A.V. Londer Y.Y. Boudko S.P. Mesyanzhinov V.V. Biochemistry (Moscow). 1999; 64: 817-823PubMed Google Scholar, 24Boudko S.P. Londer Y.Y. Letarov A.V. Sernova N.V. Engel J. Mesyanzhinov V.V. Eur. J. Biochem. 2002; 269: 833-841Crossref PubMed Scopus (32) Google Scholar) (GenBank™ accession no. AAD42679) was generated by annealing the oligonucleotide Foldon-5′1 (5′-AGCTTTATATTCCTGAAGCTCCAAGAGATGGGCAAGCTTACGTTCGTAA-3′) with Foldon-5′2(5′-CCATCTTTACGAACGTAAGCTTGCCCATCTCTTGGAGCTTCAGGAATATAA-3′), and Foldon-3′1 (5′-AGATGGCGAATGGGTATTCCTTTCTACCTTTTTATCACCAGCATAAGC-3′) with Foldon-3′2 (5′-GGCCGCTTATGCTGGTGATAAAAAGGTAGAAAGGAATACCCATTCG-3′). The oligonucleotides (Invitrogen) were designed so that HindIII and NotI overhangs (underlined) are created at the 5′ and 3′ ends of the annealed Foldon-5′ and Foldon-3′ fragments, respectively, and cohesive overhangs at the 3′ and 5′ ends. The foldon fragments were co-ligated into HindIII-NotI digested pBluescript (Stratagene) to generate pBSfoldon. To replace the sequence coding for the C-propeptide of the pCα1(I) chain with that coding for foldon, two fragments were generated by PCR, the first extending from an internal BamHI site in the pCα1(I) cDNA to the codon for the last amino acid of the C-telopeptide and the second from the first codon of the foldon cDNA to the NotI site following the stop codon. These fragments were co-ligated into BamHI-NotI-digested pPIC3KpCα1(I) to generate pPIC3Kα1(I)foldon. To delete the C-propeptide, a fragment extending from the internal BamHI site of pCα1(I) cDNA to the codon for the last amino acid of the C-telopeptide followed by a stop codon, and a NotI site was created by PCR and ligated into BamHI-NotI-digested pPIC3KpCα1(I) to generate pPIC3Kα1(I). The pPIC3KpCα1(I), pPIC3Kα1(I)foldon, and pPIC3Kα1(I) constructs were linearized with SalI and transformed into the ArgαAdeβ,his–strain expressing recombinant human prolyl 4-hydroxylase tetramers. Schematic representations of the pCα1(I), α1(I)foldon and α1(I) chains are shown in Fig. 1. PCα2(I), α2(I)foldon, PCα1(I)+PCα2(I), and α1(I)foldon+α2(I)foldon Strains—A P. pastoris expression cassette encoding human pCα2(I) chains was digested from pBLADEIXpCα2(I) (14Nokelainen M. Tu H. Vuorela A. Notbohm H. Kivirikko K.I. Myllyharju J. Yeast. 2001; 18: 797-806Crossref PubMed Scopus (85) Google Scholar) with PmeI-NotI and cloned into pPICZB to generate pPICZBpCα2(I). To replace the C-propeptide of pCα2(I) with foldon, two fragments were generated by PCR, the first extending from an internal AvrII site in the pCα2(I) cDNA to the codon for the last amino acid of the C-telopeptide, and the second encoding foldon as above. These fragments were co-ligated into AvrII-NotI-digested pPICZBpCα2(I) to generate pPICZBα2(I)foldon. The constructs were linearized with PmeI and transformed into the ArgαAdeβ,his–strain to generate the strains PCα2(I) and α2(I)foldon. To study the expression of type I collagen heterotrimers, the linearized pPICZBpCα2(I) and pPICZBα2(I)foldon constructs were transformed into the above strains expressing pCα1(I) and α1(I)foldon chains, respectively. PCα1(III), α1(III)foldon, and α1(III) Strains—To delete the sequence encoding the N-propeptide of proα1(III) chains, a PCR fragment extending from the PmeI site of the alcohol oxidase 5′ sequence of pPICZB to the end of the signal sequence of proα1(III) and followed directly by the sequence coding for the N-telopeptide of proα1(III) until an internal NdeI site was amplified using pPICZBproα1(III) (12Vuorela A. Myllyharju J. Nissi R. Pihlajaniemi T. Kivirikko K.I. EMBO J. 1997; 16: 6702-6712Crossref PubMed Scopus (128) Google Scholar) as a template and a 5′-GCCCATATGAATCATACTG TGCCAAAATAATAGTGGGATGAAGCA-3′ oligonucleotide (with the nucleotides corresponding to the signal sequence and N-telopeptide shown in bold and italics, respectively, and the NdeI site underlined) as the reverse primer. The fragment was cloned into PmeI-NdeI digested pPICZBproα1(III) to generate pPICZBpCα1(III). To change the expression vectors, the proα1(III) and pCα1(III) expression cassettes were digested from the pPICZB vectors with PmeI-NotI and cloned into pPIC3K to generate pPIC3Kproα1(III) and pPIC3KpCα1(III). To replace the C-propeptide of pCα1(III) with foldon, two fragments were generated by PCR, the first extending from an internal AvrII site in the pCα1(III) cDNA to the 3′ end of the C-telopeptide sequence and the second encoding foldon as described above. The fragments were co-ligated into AvrII-NotI-digested pPIC3KpCα1(III) to generate pPIC3Kα1(III)foldon. To delete the C-propeptide, a fragment extending from the internal AvrII site to the 3′ end of the C-telopeptide sequence followed by a stop codon, and a NotI site was created by PCR and ligated into AvrII-NotI-digested pPIC3KpCα1(III) to generate pPIC3Kα1(III). The pPIC3Kproα1(III), pPIC3KpCα1(III), pPIC3Kα1(III)foldon, and pPIC3Kα1(III) constructs were linearized with StuI and transformed into the ArgαAdeβ,his–strain. Culture and Induction of P. pastoris Strains—Cells were cultured in 25-ml shaker flasks in a buffered glycerol complex medium, pH 6.0, with 1 g/liter yeast extract and 2 g/liter peptone. Expression was induced in a buffered minimal methanol medium, pH 6.0, and methanol was added every 12 h to a final concentration of 0.5%. Amino acids were added up to 100 μg/liter as required. Analysis of the Recombinant Collagens—Cells were harvested after a 60-h methanol induction at 30 °C, washed once, and suspended in cold (4 °C) 5% glycerol, 1 mm Pefabloc SC, and 50 mm sodium phosphate buffer, pH 7.4. The cells were broken by vortexing with glass beads, and the lysate was centrifuged at 10,000 × g for 30 min. Aliquots of the soluble fractions were analyzed by SDS-PAGE under reducing conditions followed by Western blotting with polyclonal type I or type III collagen antibodies (Rockland). Further aliquots were digested with pepsin for 2 h at 22 °C or 16 h at 4 °C, the thermal stability of the pepsin-resistant recombinant collagens was studied by digestion with a mixture of trypsin and chymotrypsin for 2 min at various temperatures (28Bruckner P. Prockop D.J. Anal. Biochem. 1981; 110: 360-368Crossref PubMed Scopus (229) Google Scholar), and the samples were analyzed by SDS-PAGE under reducing or nonreducing conditions followed by Coomassie Blue staining or Western blotting as described above. The amounts of the collagen chains were estimated by densitometry of the Coomassie Blue-stained bands using a GS-710 calibrated imaging densitometer (Bio-Rad). Assembly of Stable Type I [α1(I)] 3 and Type III [α1(III)] 3 Homotrimers—It has previously been shown that stable recombinant human type I and type III collagen homotrimers and type I collagen heterotrimers can be produced in P. pastoris by expressing full-length proα1(I) or proα1(III) chains alone or by co-expressing proα1(I) chains with proα2(I) chains in a recombinant strain also expressing human prolyl 4-hydroxylase α2β2 tetramers (12Vuorela A. Myllyharju J. Nissi R. Pihlajaniemi T. Kivirikko K.I. EMBO J. 1997; 16: 6702-6712Crossref PubMed Scopus (128) Google Scholar, 14Nokelainen M. Tu H. Vuorela A. Notbohm H. Kivirikko K.I. Myllyharju J. Yeast. 2001; 18: 797-806Crossref PubMed Scopus (85) Google Scholar). Deletion of the N-propeptides had no effect on the chain assembly, the pCα1(I) and pCα2(I) chains producing heterotrimeric pCcollagen molecules with the correct 2:1 chain ratio (14Nokelainen M. Tu H. Vuorela A. Notbohm H. Kivirikko K.I. Myllyharju J. Yeast. 2001; 18: 797-806Crossref PubMed Scopus (85) Google Scholar). In addition, the expression levels of the type I pCcollagen homotrimers and heterotrimers were 1.5–3-fold relative to those of the corresponding procollagen trimers (14Nokelainen M. Tu H. Vuorela A. Notbohm H. Kivirikko K.I. Myllyharju J. Yeast. 2001; 18: 797-806Crossref PubMed Scopus (85) Google Scholar). To study the effect of replacement of the C-propeptide by the foldon sequence and deletion of the C-propeptide on the assembly of type I and III collagen homotrimers, expression constructs encoding pCα1(I), α1(I)foldon, and α1(I) chains or proα1(III), pCα1(III), α1(III)foldon, and α1(III) chains were transformed by electroporation into a P. pastoris strain expressing active human prolyl 4-hydroxylase. The strains were cultured in buffered glycerol complex medium, and expression was induced in buffered minimal methan
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱科源啊源完成签到 ,获得积分10
2秒前
西山菩提完成签到,获得积分10
2秒前
包容的忆灵完成签到 ,获得积分10
5秒前
9秒前
ceeray23应助科研通管家采纳,获得10
13秒前
你要学好完成签到 ,获得积分10
15秒前
15秒前
小事完成签到 ,获得积分10
16秒前
CHRIS发布了新的文献求助10
16秒前
gmc完成签到 ,获得积分10
16秒前
5433完成签到 ,获得积分10
18秒前
小郭发布了新的文献求助10
20秒前
桐桐应助CHRIS采纳,获得10
26秒前
牛马完成签到,获得积分10
26秒前
涛1完成签到 ,获得积分10
55秒前
碗碗豆喵完成签到 ,获得积分10
57秒前
Brave完成签到,获得积分10
1分钟前
负责以山完成签到 ,获得积分10
1分钟前
丝丢皮得完成签到 ,获得积分10
1分钟前
丝丢皮的完成签到 ,获得积分10
1分钟前
苗条丹南完成签到 ,获得积分10
1分钟前
m李完成签到 ,获得积分10
1分钟前
自由的中蓝完成签到 ,获得积分10
1分钟前
kyle完成签到 ,获得积分10
1分钟前
1分钟前
叼面包的数学狗完成签到 ,获得积分10
1分钟前
oxear完成签到,获得积分10
1分钟前
小郭完成签到,获得积分10
1分钟前
快乐的芷巧完成签到,获得积分10
1分钟前
xfy完成签到,获得积分10
1分钟前
张振宇完成签到 ,获得积分10
1分钟前
Balance Man完成签到 ,获得积分10
1分钟前
tmobiusx完成签到,获得积分10
2分钟前
LELE完成签到 ,获得积分10
2分钟前
2分钟前
安琪琪完成签到 ,获得积分10
2分钟前
忧伤的慕梅完成签到 ,获得积分10
2分钟前
HY完成签到 ,获得积分10
2分钟前
sprouthui完成签到 ,获得积分10
2分钟前
华仔应助唠叨的若男采纳,获得10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495297
关于积分的说明 11076070
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783291
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839