Prediction of Mortality in the First Two Years of Hemodialysis: Results from a Validation Study

医学 血液透析 逻辑回归 队列 内科学 接收机工作特性 透析 肌酐
作者
Stephan Thijssen,Len A. Usvyat,Peter Kotanko
出处
期刊:Blood Purification [S. Karger AG]
卷期号:33 (1-3): 165-170 被引量:27
标识
DOI:10.1159/000334138
摘要

Chronic hemodialysis (HD) patients experience high rates of mortality. Alerting medical staff of patients at increased risk of death may support clinical decision making.A large cohort of incident HD patients was used to develop logistic regression models to predict death in the subsequent 6 months ('derivation cohort'). Predictors were age, gender, race, ethnicity, vascular access type, diabetic status, pre-HD systolic and diastolic blood pressure, pre-HD weight, pre-HD temperature, relative interdialytic weight gain, serum albumin, hemoglobin, phosphorus, serum creatinine, serum sodium, urea reduction ratio, equilibrated normalized protein catabolic rate, and equilibrated dialytic and renal Kt/V. These logistic regression models were then applied to validation cohorts. Predictive performance of the models was described in terms of sensitivity, specificity, and area under receiver-operating characteristic curves (AUC-ROC).A total of 6,838 incident HD patients were followed over 2 years. The derivation cohort initially comprised 4,512 patients. In the validation cohort of initially 2,326 patients, the logistic regression models were able to predict mortality in subsequent 6-month periods with a sensitivity between 58 and 69%, and a specificity of 74-77%; the respective AUC-ROC were 0.67-0.72 (all p < 0.0001). Pre-HD weight and serum albumin levels were consistently significant predictors of mortality in all models.The results indicate that logistic regression models are useful tools in estimating incident HD patients' probability of death in 6-month intervals for at least up to 2 years after beginning dialysis. Model predictions may be used to alert medical staff to patients at increased risk of death and facilitate timely diagnostic and therapeutic interventions to improve outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庄怀逸完成签到 ,获得积分10
刚刚
wenwen完成签到,获得积分10
刚刚
1秒前
fuguier发布了新的文献求助10
1秒前
山水完成签到,获得积分10
2秒前
2秒前
木木杉完成签到 ,获得积分10
2秒前
卓涵柏发布了新的文献求助10
2秒前
聪慧咖啡豆完成签到,获得积分10
3秒前
流白完成签到,获得积分10
4秒前
不想上班了完成签到,获得积分10
5秒前
酷炫橘子完成签到,获得积分10
5秒前
SYLH应助Gilana采纳,获得10
5秒前
肃肃其羽完成签到 ,获得积分10
5秒前
Libeau完成签到,获得积分10
6秒前
6秒前
英俊的铭应助silentJeremy采纳,获得30
6秒前
宇文青寒完成签到,获得积分10
7秒前
8秒前
coco完成签到,获得积分10
9秒前
无花果粒橙完成签到,获得积分10
10秒前
文小杰完成签到,获得积分10
11秒前
阿九发布了新的文献求助10
11秒前
Neonoes完成签到,获得积分10
11秒前
苹果山芙完成签到,获得积分10
11秒前
小白龙发布了新的文献求助10
12秒前
田様应助研友_89N27L采纳,获得10
12秒前
liushoujia完成签到,获得积分10
12秒前
乔木木完成签到,获得积分10
13秒前
轻松的雨竹完成签到 ,获得积分10
13秒前
Mp4完成签到 ,获得积分10
13秒前
852应助fuguier采纳,获得10
13秒前
VDC应助miemie66采纳,获得50
15秒前
典雅的太阳完成签到,获得积分10
15秒前
负责冰海完成签到,获得积分10
16秒前
小林子完成签到,获得积分10
16秒前
17秒前
阔达不凡完成签到,获得积分10
17秒前
frl0523应助yhbk采纳,获得10
17秒前
乐多完成签到 ,获得积分20
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890