纤维素
剪切(物理)
纳米尺度
酶水解
材料科学
水解
水溶液
化学工程
均质化(气候)
纤维
超声
复合材料
化学
纳米技术
有机化学
色谱法
工程类
生物多样性
生物
生物化学
生态学
作者
Marjo Pääkkö,Mikael Ankerfors,Harri Kosonen,Antti Nykänen,Sakari Ahola,Monika Österberg,Janne Ruokolainen,Janne Laine,Per Tomas Larsson,Olli Ikkala,Tom Lindstrøm
出处
期刊:Biomacromolecules
[American Chemical Society]
日期:2007-05-03
卷期号:8 (6): 1934-1941
被引量:1672
摘要
Toward exploiting the attractive mechanical properties of cellulose I nanoelements, a novel route is demonstrated, which combines enzymatic hydrolysis and mechanical shearing. Previously, an aggressive acid hydrolysis and sonication of cellulose I containing fibers was shown to lead to a network of weakly hydrogen-bonded rodlike cellulose elements typically with a low aspect ratio. On the other hand, high mechanical shearing resulted in longer and entangled nanoscale cellulose elements leading to stronger networks and gels. Nevertheless, a widespread use of the latter concept has been hindered because of lack of feasible methods of preparation, suggesting a combination of mild hydrolysis and shearing to disintegrate cellulose I containing fibers into high aspect ratio cellulose I nanoscale elements. In this work, mild enzymatic hydrolysis has been introduced and combined with mechanical shearing and a high-pressure homogenization, leading to a controlled fibrillation down to nanoscale and a network of long and highly entangled cellulose I elements. The resulting strong aqueous gels exhibit more than 5 orders of magnitude tunable storage modulus G‘ upon changing the concentration. Cryotransmission electron microscopy, atomic force microscopy, and cross-polarization/magic-angle spinning (CP/MAS) 13C NMR suggest that the cellulose I structural elements obtained are dominated by two fractions, one with lateral dimension of 5−6 nm and one with lateral dimensions of about 10−20 nm. The thicker diameter regions may act as the junction zones for the networks. The resulting material will herein be referred to as MFC (microfibrillated cellulose). Dynamical rheology showed that the aqueous suspensions behaved as gels in the whole investigated concentration range 0.125−5.9% w/w, G‘ ranging from 1.5 Pa to 105 Pa. The maximum G‘ was high, about 2 orders of magnitude larger than typically observed for the corresponding nonentangled low aspect ratio cellulose I gels, and G‘ scales with concentration with the power of approximately three. The described preparation method of MFC allows control over the final properties that opens novel applications in materials science, for example, as reinforcement in composites and as templates for surface modification.
科研通智能强力驱动
Strongly Powered by AbleSci AI