Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels

纤维素 剪切(物理) 纳米尺度 酶水解 材料科学 水解 水溶液 化学工程 均质化(气候) 纤维 超声 复合材料 化学 纳米技术 有机化学 色谱法 工程类 生物多样性 生物 生物化学 生态学
作者
Marjo Pääkkö,Mikael Ankerfors,Harri Kosonen,Antti Nykänen,Sakari Ahola,Monika Österberg,Janne Ruokolainen,Janne Laine,Per Tomas Larsson,Olli Ikkala,Tom Lindstrøm
出处
期刊:Biomacromolecules [American Chemical Society]
卷期号:8 (6): 1934-1941 被引量:1672
标识
DOI:10.1021/bm061215p
摘要

Toward exploiting the attractive mechanical properties of cellulose I nanoelements, a novel route is demonstrated, which combines enzymatic hydrolysis and mechanical shearing. Previously, an aggressive acid hydrolysis and sonication of cellulose I containing fibers was shown to lead to a network of weakly hydrogen-bonded rodlike cellulose elements typically with a low aspect ratio. On the other hand, high mechanical shearing resulted in longer and entangled nanoscale cellulose elements leading to stronger networks and gels. Nevertheless, a widespread use of the latter concept has been hindered because of lack of feasible methods of preparation, suggesting a combination of mild hydrolysis and shearing to disintegrate cellulose I containing fibers into high aspect ratio cellulose I nanoscale elements. In this work, mild enzymatic hydrolysis has been introduced and combined with mechanical shearing and a high-pressure homogenization, leading to a controlled fibrillation down to nanoscale and a network of long and highly entangled cellulose I elements. The resulting strong aqueous gels exhibit more than 5 orders of magnitude tunable storage modulus G‘ upon changing the concentration. Cryotransmission electron microscopy, atomic force microscopy, and cross-polarization/magic-angle spinning (CP/MAS) 13C NMR suggest that the cellulose I structural elements obtained are dominated by two fractions, one with lateral dimension of 5−6 nm and one with lateral dimensions of about 10−20 nm. The thicker diameter regions may act as the junction zones for the networks. The resulting material will herein be referred to as MFC (microfibrillated cellulose). Dynamical rheology showed that the aqueous suspensions behaved as gels in the whole investigated concentration range 0.125−5.9% w/w, G‘ ranging from 1.5 Pa to 105 Pa. The maximum G‘ was high, about 2 orders of magnitude larger than typically observed for the corresponding nonentangled low aspect ratio cellulose I gels, and G‘ scales with concentration with the power of approximately three. The described preparation method of MFC allows control over the final properties that opens novel applications in materials science, for example, as reinforcement in composites and as templates for surface modification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦兜完成签到,获得积分10
刚刚
刚刚
砰砰发布了新的文献求助10
1秒前
eating完成签到,获得积分10
1秒前
雷家完成签到,获得积分10
2秒前
虚心的冷雪完成签到,获得积分10
2秒前
2秒前
无花果应助还单身的玫瑰采纳,获得10
4秒前
am完成签到,获得积分10
4秒前
傲娇的夜山完成签到,获得积分10
4秒前
xjy1521完成签到,获得积分10
4秒前
晶晶完成签到,获得积分10
5秒前
Dlan完成签到,获得积分10
5秒前
完美世界应助wing采纳,获得10
5秒前
WIK发布了新的文献求助20
5秒前
Qian完成签到,获得积分10
5秒前
zhxhh完成签到,获得积分10
6秒前
小九九发布了新的文献求助10
6秒前
去偷火龙果完成签到,获得积分10
6秒前
7秒前
袁奇点完成签到,获得积分10
7秒前
在下风爵完成签到,获得积分10
7秒前
cdercder应助clown采纳,获得10
7秒前
淡定从凝完成签到,获得积分10
7秒前
共享精神应助义气剑通采纳,获得10
8秒前
科研通AI2S应助DQ采纳,获得10
8秒前
鸢尾完成签到 ,获得积分10
8秒前
明帅完成签到,获得积分10
9秒前
Amy完成签到,获得积分10
9秒前
聪明眼睛完成签到,获得积分10
9秒前
大模型应助小熵采纳,获得10
9秒前
斯寜应助slow采纳,获得10
9秒前
爱吃巧克力的草莓应助slow采纳,获得10
9秒前
科研通AI2S应助噜啦啦采纳,获得10
9秒前
honey完成签到,获得积分10
9秒前
10秒前
GongSyi完成签到 ,获得积分10
10秒前
10秒前
yh发布了新的文献求助10
11秒前
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746471
求助须知:如何正确求助?哪些是违规求助? 3289359
关于积分的说明 10064159
捐赠科研通 3005740
什么是DOI,文献DOI怎么找? 1650360
邀请新用户注册赠送积分活动 785858
科研通“疑难数据库(出版商)”最低求助积分说明 751296