超参数
贝叶斯概率
计算机科学
集合(抽象数据类型)
光学(聚焦)
比例(比率)
灵敏度(控制系统)
贝叶斯推理
人工智能
机器学习
数据集
海况
数据挖掘
工程类
地质学
海洋学
物理
量子力学
电子工程
光学
程序设计语言
作者
Ulrik Dam Nielsen,Toshio Iseki
标识
DOI:10.1115/omae2010-20099
摘要
The paper deals with estimation of sea state parameters on the basis of time histories of ship responses. The focus is on the Bayesian estimation concept, where the outcome is controlled by a set of hyperparameters, which theoretically must be optimised to provide the optimum solution in terms of sea state parameters. The paper looks into the possibility of fixing the hyperparameters since this will increase the computational efficiency of the method. Sensitivity studies with respect to the hyperparameters are made for both synthetic data and full-scale data.
科研通智能强力驱动
Strongly Powered by AbleSci AI