PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy

免疫疗法 免疫组织化学 肿瘤微环境 医学 黑色素瘤 生物标志物 免疫系统 癌症免疫疗法 癌症 抗体 肺癌 癌症研究 免疫学 肿瘤科 内科学 生物 生物化学
作者
Sandip Pravin Patel,Razelle Kurzrock
出处
期刊:Molecular Cancer Therapeutics [American Association for Cancer Research]
卷期号:14 (4): 847-856 被引量:1968
标识
DOI:10.1158/1535-7163.mct-14-0983
摘要

The resurgence of cancer immunotherapy stems from an improved understanding of the tumor microenvironment. The PD-1/PD-L1 axis is of particular interest, in light of promising data demonstrating a restoration of host immunity against tumors, with the prospect of durable remissions. Indeed, remarkable clinical responses have been seen in several different malignancies including, but not limited to, melanoma, lung, kidney, and bladder cancers. Even so, determining which patients derive benefit from PD-1/PD-L1-directed immunotherapy remains an important clinical question, particularly in light of the autoimmune toxicity of these agents. The use of PD-L1 (B7-H1) immunohistochemistry (IHC) as a predictive biomarker is confounded by multiple unresolved issues: variable detection antibodies, differing IHC cutoffs, tissue preparation, processing variability, primary versus metastatic biopsies, oncogenic versus induced PD-L1 expression, and staining of tumor versus immune cells. Emerging data suggest that patients whose tumors overexpress PD-L1 by IHC have improved clinical outcomes with anti-PD-1-directed therapy, but the presence of robust responses in some patients with low levels of expression of these markers complicates the issue of PD-L1 as an exclusionary predictive biomarker. An improved understanding of the host immune system and tumor microenvironment will better elucidate which patients derive benefit from these promising agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助Missyang采纳,获得10
4秒前
miluren发布了新的文献求助10
6秒前
curtisness应助小白生信采纳,获得10
7秒前
黄小慧发布了新的文献求助10
8秒前
8秒前
12秒前
诺诺完成签到,获得积分10
14秒前
Nan完成签到,获得积分10
14秒前
14秒前
MOLLY完成签到,获得积分10
15秒前
yyyy完成签到,获得积分10
15秒前
程住气完成签到 ,获得积分10
17秒前
18秒前
茶茶发布了新的文献求助10
19秒前
kmario完成签到,获得积分10
20秒前
粥粥完成签到 ,获得积分10
21秒前
miluren完成签到,获得积分10
23秒前
24秒前
搜集达人应助潞璐路采纳,获得10
26秒前
AST完成签到,获得积分10
27秒前
28秒前
小李发布了新的文献求助50
29秒前
茶茶完成签到,获得积分10
29秒前
124332发布了新的文献求助10
32秒前
苏苏发布了新的文献求助10
33秒前
YA完成签到,获得积分10
39秒前
潞璐路完成签到,获得积分10
39秒前
怕孤单的听寒完成签到,获得积分10
40秒前
41秒前
tuanheqi应助beiyoumilu采纳,获得100
43秒前
43秒前
Viper3完成签到,获得积分10
44秒前
神光完成签到,获得积分10
44秒前
FashionBoy应助渝州人采纳,获得10
45秒前
彭于晏应助fuyaoye2010采纳,获得10
47秒前
手机应助烬屋藏娇采纳,获得10
50秒前
51秒前
1111发布了新的文献求助10
51秒前
小李完成签到,获得积分10
51秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267632
求助须知:如何正确求助?哪些是违规求助? 2907088
关于积分的说明 8340578
捐赠科研通 2577809
什么是DOI,文献DOI怎么找? 1401227
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633974