数学
插值(计算机图形学)
插值空间
开映射定理(泛函分析)
对偶(序理论)
纯数学
离散数学
Lp空间
巴拿赫空间
埃伯林-Šmulian定理
功能分析
计算机科学
动画
生物化学
化学
计算机图形学(图像)
基因
作者
Jöran Bergh,Jörgen Löfström
摘要
1. Some Classical Theorems.- 1.1. The Riesz-Thorin Theorem.- 1.2. Applications of the Riesz-Thorin Theorem.- 1.3. The Marcinkiewicz Theorem.- 1.4. An Application of the Marcinkiewicz Theorem.- 1.5. Two Classical Approximation Results.- 1.6. Exercises.- 1.7. Notes and Comment.- 2. General Properties of Interpolation Spaces.- 2.1. Categories and Functors.- 2.2. Normed Vector Spaces.- 2.3. Couples of Spaces.- 2.4. Definition of Interpolation Spaces.- 2.5. The Aronszajn-Gagliardo Theorem.- 2.6. A Necessary Condition for Interpolation.- 2.7. A Duality Theorem.- 2.8. Exercises.- 2.9. Notes and Comment.- 3. The Real Interpolation Method.- 3.1. The K-Method.- 3.2. The J-Method.- 3.3. The Equivalence Theorem.- 3.4. Simple Properties of ??, q.- 3.5. The Reiteration Theorem.- 3.6. A Formula for the K-Functional.- 3.7. The Duality Theorem.- 3.8. A Compactness Theorem.- 3.9. An Extremal Property of the Real Method.- 3.10. Quasi-Normed Abelian Groups.- 3.11. The Real Interpolation Method for Quasi-Normed Abelian Groups.- 3.12. Some Other Equivalent Real Interpolation Methods.- 3.13. Exercises.- 3.14. Notes and Comment.- 4. The Complex Interpolation Method.- 4.1. Definition of the Complex Method.- 4.2. Simple Properties of ?[?].- 4.3. The Equivalence Theorem.- 4.4. Multilinear Interpolation.- 4.5. The Duality Theorem.- 4.6. The Reiteration Theorem.- 4.7. On the Connection with the Real Method.- 4.8. Exercises.- 4.9. Notes and Comment.- 5. Interpolation of Lp-Spaces.- 5.1. Interpolation of Lp-Spaces: the Complex Method.- 5.2. Interpolation of Lp-Spaces: the Real Method.- 5.3. Interpolation of Lorentz Spaces.- 5.4. Interpolation of Lp-Spaces with Change of Measure: p0 = p1.- 5.5. Interpolation of Lp-Spaces with Change of Measure: p0 ? p1.- 5.6. Interpolation of Lp-Spaces of Vector-Valued Sequences.- 5.7. Exercises.- 5.8. Notes and Comment.- 6. Interpolation of Sobolev and Besov Spaces.- 6.1. Fourier Multipliers.- 6.2. Definition of the Sobolev and Besov Spaces.- 6.3. The Homogeneous Sobolev and Besov Spaces.- 6.4. Interpolation of Sobolev and Besov Spaces.- 6.5. An Embedding Theorem.- 6.6. A Trace Theorem.- 6.7. Interpolation of Semi-Groups of Operators.- 6.8. Exercises.- 6.9. Notes and Comment.- 7. Applications to Approximation Theory.- 7.1. Approximation Spaces.- 7.2. Approximation of Functions.- 7.3. Approximation of Operators.- 7.4. Approximation by Difference Operators.- 7.5. Exercises.- 7.6. Notes and Comment.- References.- List of Symbols.
科研通智能强力驱动
Strongly Powered by AbleSci AI