Systematic review of predictive risk models for adverse drug events in hospitalized patients

医学 药品 重症监护医学 不利影响 内科学 药理学
作者
Nazanin Falconer,Michael Barras,Neil Cottrell
出处
期刊:British Journal of Clinical Pharmacology [Wiley]
卷期号:84 (5): 846-864 被引量:59
标识
DOI:10.1111/bcp.13514
摘要

An emerging approach to reducing hospital adverse drug events is the use of predictive risk scores. The aim of this systematic review was to critically appraise models developed for predicting adverse drug event risk in inpatients.Embase, PubMed, CINAHL and Scopus databases were used to identify studies of predictive risk models for hospitalized adult inpatients. Studies had to have used multivariable logistic regression for model development, resulting in a score or rule with two or more variables, to predict the likelihood of inpatient adverse drug events. The Checklist for the critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) was used to critically appraise eligible studies.Eleven studies met the inclusion criteria and were included in the review. Ten described the development of a new model, whilst one study revalidated and updated an existing score. Studies used different definitions for outcome but were synonymous with or closely related to adverse drug events. Four studies undertook external validation, five internally validated and two studies did not validate their model. No studies evaluated impact of risk scores on patient outcomes.Adverse drug event risk prediction is a complex endeavour but could help to improve patient safety and hospital resource management. Studies in this review had some limitations in their methods for model development, reporting and validation. Two studies, the BADRI and Trivalle's risk scores, used better model development and validation methods and reported reasonable performance, and so could be considered for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李不爱搞科研完成签到,获得积分10
1秒前
美好斓发布了新的文献求助10
1秒前
1秒前
明天完成签到,获得积分10
2秒前
2秒前
2秒前
ryx发布了新的文献求助10
2秒前
大模型应助啦啦啦采纳,获得10
3秒前
3秒前
mmyhn发布了新的文献求助10
3秒前
天亮了完成签到 ,获得积分10
4秒前
4秒前
4秒前
田様应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
打打应助笑柳采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
魔法以琳发布了新的文献求助50
5秒前
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
bkagyin应助心灵美的犀牛采纳,获得10
6秒前
7秒前
美琦完成签到,获得积分10
7秒前
辛涩发布了新的文献求助10
7秒前
冷酷达发布了新的文献求助10
8秒前
8秒前
小蘑菇应助半芹采纳,获得10
8秒前
PDY发布了新的文献求助30
9秒前
9秒前
9秒前
小中发布了新的文献求助10
9秒前
9秒前
9秒前
清脆的又蓝完成签到,获得积分10
11秒前
11秒前
quzhenzxxx发布了新的文献求助10
11秒前
自然秋柳发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2000
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3119025
求助须知:如何正确求助?哪些是违规求助? 2769335
关于积分的说明 7700759
捐赠科研通 2424765
什么是DOI,文献DOI怎么找? 1287886
科研通“疑难数据库(出版商)”最低求助积分说明 620698
版权声明 599962