眼底(子宫)
深度学习
人工智能
视网膜
平均绝对误差
血压
医学
接收机工作特性
计算机科学
眼科
心脏病学
机器学习
统计
内科学
数学
均方误差
作者
Ryan Poplin,Avinash V. Varadarajan,Katy Blumer,Yun Liu,Michael V. McConnell,Greg S. Corrado,Lily Peng,Dale R. Webster
标识
DOI:10.1038/s41551-018-0195-0
摘要
Traditionally, medical discoveries are made by observing associations, making hypotheses from them and then designing and running experiments to test the hypotheses. However, with medical images, observing and quantifying associations can often be difficult because of the wide variety of features, patterns, colours, values and shapes that are present in real data. Here, we show that deep learning can extract new knowledge from retinal fundus images. Using deep-learning models trained on data from 284,335 patients and validated on two independent datasets of 12,026 and 999 patients, we predicted cardiovascular risk factors not previously thought to be present or quantifiable in retinal images, such as age (mean absolute error within 3.26 years), gender (area under the receiver operating characteristic curve (AUC) = 0.97), smoking status (AUC = 0.71), systolic blood pressure (mean absolute error within 11.23 mmHg) and major adverse cardiac events (AUC = 0.70). We also show that the trained deep-learning models used anatomical features, such as the optic disc or blood vessels, to generate each prediction. Deep learning predicts, from retinal images, cardiovascular risk factors—such as smoking status, blood pressure and age—not previously thought to be present or quantifiable in these images.
科研通智能强力驱动
Strongly Powered by AbleSci AI