Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning

眼底(子宫) 深度学习 人工智能 视网膜 平均绝对误差 血压 医学 接收机工作特性 计算机科学 眼科 心脏病学 机器学习 统计 内科学 数学 均方误差
作者
Ryan Poplin,Avinash V. Varadarajan,Katy Blumer,Yun Liu,Michael V. McConnell,Greg S. Corrado,Lily Peng,Dale R. Webster
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:2 (3): 158-164 被引量:1473
标识
DOI:10.1038/s41551-018-0195-0
摘要

Traditionally, medical discoveries are made by observing associations, making hypotheses from them and then designing and running experiments to test the hypotheses. However, with medical images, observing and quantifying associations can often be difficult because of the wide variety of features, patterns, colours, values and shapes that are present in real data. Here, we show that deep learning can extract new knowledge from retinal fundus images. Using deep-learning models trained on data from 284,335 patients and validated on two independent datasets of 12,026 and 999 patients, we predicted cardiovascular risk factors not previously thought to be present or quantifiable in retinal images, such as age (mean absolute error within 3.26 years), gender (area under the receiver operating characteristic curve (AUC) = 0.97), smoking status (AUC = 0.71), systolic blood pressure (mean absolute error within 11.23 mmHg) and major adverse cardiac events (AUC = 0.70). We also show that the trained deep-learning models used anatomical features, such as the optic disc or blood vessels, to generate each prediction. Deep learning predicts, from retinal images, cardiovascular risk factors—such as smoking status, blood pressure and age—not previously thought to be present or quantifiable in these images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘歌完成签到 ,获得积分10
1秒前
阿巡完成签到,获得积分10
1秒前
Chen完成签到,获得积分10
3秒前
LSH970829发布了新的文献求助10
3秒前
哈哈哈完成签到 ,获得积分10
4秒前
汤姆完成签到,获得积分10
4秒前
6秒前
6秒前
翠翠完成签到,获得积分10
7秒前
7秒前
LSH970829完成签到,获得积分10
8秒前
Lyg完成签到,获得积分20
9秒前
坚强的樱发布了新的文献求助10
9秒前
baodingning完成签到,获得积分10
10秒前
10秒前
公茂源发布了新的文献求助30
10秒前
热爱完成签到,获得积分10
11秒前
12秒前
叫滚滚发布了新的文献求助10
13秒前
星瑆心完成签到,获得积分10
13秒前
啦啦啦啦啦完成签到,获得积分10
14秒前
Lyg发布了新的文献求助10
14秒前
Dksido完成签到,获得积分10
15秒前
兰博基尼奥完成签到,获得积分10
15秒前
热情芷荷发布了新的文献求助10
17秒前
random完成签到,获得积分10
18秒前
18秒前
果果瑞宁完成签到,获得积分10
18秒前
19秒前
机智小虾米完成签到,获得积分20
19秒前
goldenfleece完成签到,获得积分10
20秒前
科研通AI2S应助学者采纳,获得10
20秒前
小杨完成签到,获得积分10
21秒前
sutharsons应助科研通管家采纳,获得30
22秒前
22秒前
Ava应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808