Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning

眼底(子宫) 深度学习 人工智能 视网膜 平均绝对误差 血压 医学 接收机工作特性 计算机科学 眼科 心脏病学 机器学习 统计 内科学 数学 均方误差
作者
Ryan Poplin,Avinash V. Varadarajan,Katy Blumer,Yun Liu,Michael V. McConnell,Greg S. Corrado,Lily Peng,Dale R. Webster
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:2 (3): 158-164 被引量:1662
标识
DOI:10.1038/s41551-018-0195-0
摘要

Traditionally, medical discoveries are made by observing associations, making hypotheses from them and then designing and running experiments to test the hypotheses. However, with medical images, observing and quantifying associations can often be difficult because of the wide variety of features, patterns, colours, values and shapes that are present in real data. Here, we show that deep learning can extract new knowledge from retinal fundus images. Using deep-learning models trained on data from 284,335 patients and validated on two independent datasets of 12,026 and 999 patients, we predicted cardiovascular risk factors not previously thought to be present or quantifiable in retinal images, such as age (mean absolute error within 3.26 years), gender (area under the receiver operating characteristic curve (AUC) = 0.97), smoking status (AUC = 0.71), systolic blood pressure (mean absolute error within 11.23 mmHg) and major adverse cardiac events (AUC = 0.70). We also show that the trained deep-learning models used anatomical features, such as the optic disc or blood vessels, to generate each prediction. Deep learning predicts, from retinal images, cardiovascular risk factors—such as smoking status, blood pressure and age—not previously thought to be present or quantifiable in these images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaobai应助科研通管家采纳,获得10
1秒前
lilivite应助科研通管家采纳,获得20
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
xiaobai应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
内向千筹应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
酷酷盼秋应助duohao2023采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
大个应助苏乘风采纳,获得20
3秒前
顺利完成签到,获得积分10
4秒前
笨笨从凝完成签到,获得积分10
4秒前
6秒前
Sakura_Chloe完成签到,获得积分20
6秒前
6秒前
柏梦岚发布了新的文献求助10
7秒前
fff关闭了fff文献求助
8秒前
8秒前
天天快乐应助有点儿小库采纳,获得10
9秒前
周小鱼完成签到,获得积分10
9秒前
科研通AI6应助孤独的万言采纳,获得10
10秒前
Lucky完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
科研通AI6应助lihaifeng采纳,获得10
14秒前
翻翻发布了新的文献求助10
14秒前
有点儿小库完成签到,获得积分10
14秒前
bsknkd完成签到 ,获得积分10
16秒前
隐形曼青应助后海采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453696
求助须知:如何正确求助?哪些是违规求助? 4561241
关于积分的说明 14281357
捐赠科研通 4485225
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447276
关于科研通互助平台的介绍 1422687