Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning

眼底(子宫) 深度学习 人工智能 视网膜 平均绝对误差 血压 医学 接收机工作特性 计算机科学 眼科 心脏病学 机器学习 统计 内科学 数学 均方误差
作者
Ryan Poplin,Avinash V. Varadarajan,Katy Blumer,Yun Liu,Michael V. McConnell,Greg S. Corrado,Lily Peng,Dale R. Webster
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:2 (3): 158-164 被引量:1662
标识
DOI:10.1038/s41551-018-0195-0
摘要

Traditionally, medical discoveries are made by observing associations, making hypotheses from them and then designing and running experiments to test the hypotheses. However, with medical images, observing and quantifying associations can often be difficult because of the wide variety of features, patterns, colours, values and shapes that are present in real data. Here, we show that deep learning can extract new knowledge from retinal fundus images. Using deep-learning models trained on data from 284,335 patients and validated on two independent datasets of 12,026 and 999 patients, we predicted cardiovascular risk factors not previously thought to be present or quantifiable in retinal images, such as age (mean absolute error within 3.26 years), gender (area under the receiver operating characteristic curve (AUC) = 0.97), smoking status (AUC = 0.71), systolic blood pressure (mean absolute error within 11.23 mmHg) and major adverse cardiac events (AUC = 0.70). We also show that the trained deep-learning models used anatomical features, such as the optic disc or blood vessels, to generate each prediction. Deep learning predicts, from retinal images, cardiovascular risk factors—such as smoking status, blood pressure and age—not previously thought to be present or quantifiable in these images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zz发布了新的文献求助10
刚刚
我是老大应助liquor采纳,获得10
1秒前
英姑应助罗显发采纳,获得10
1秒前
1秒前
1秒前
1秒前
香蕉觅云应助沙海冬采纳,获得10
2秒前
2秒前
2秒前
可爱的函函应助麻瓜采纳,获得10
2秒前
英勇的寒蕾完成签到,获得积分10
3秒前
远志发布了新的文献求助30
3秒前
去银行整点金条完成签到 ,获得积分10
3秒前
5秒前
沙耶酱完成签到 ,获得积分10
5秒前
浮游应助虚幻的白凝采纳,获得10
6秒前
6秒前
平淡的芷蕊完成签到,获得积分10
6秒前
东东发布了新的文献求助10
7秒前
GG爆发布了新的文献求助10
8秒前
8秒前
cyndi发布了新的文献求助10
9秒前
英俊的铭应助zz采纳,获得10
9秒前
乐乐应助靓丽孤容采纳,获得10
10秒前
典雅的土豆完成签到,获得积分10
10秒前
丑麒发布了新的文献求助10
10秒前
11秒前
11秒前
酷波er应助不知名选手采纳,获得10
11秒前
pluto应助定风波采纳,获得10
12秒前
WZT完成签到,获得积分10
12秒前
13秒前
小乐完成签到 ,获得积分10
13秒前
禾feng完成签到,获得积分10
13秒前
董阳完成签到,获得积分10
14秒前
魏煜佳完成签到,获得积分10
15秒前
小刘完成签到,获得积分20
17秒前
17秒前
天侠客完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474332
求助须知:如何正确求助?哪些是违规求助? 4576108
关于积分的说明 14356558
捐赠科研通 4503983
什么是DOI,文献DOI怎么找? 2467875
邀请新用户注册赠送积分活动 1455626
关于科研通互助平台的介绍 1429632