化学
血红蛋白
毒性
血红素
一氧化氮
氧化磷酸化
药理学
变构调节
高铁血红蛋白
氧气
氧气输送
生物化学
酶
医学
有机化学
出处
期刊:Shock
[Ovid Technologies (Wolters Kluwer)]
日期:2017-11-06
卷期号:52 (1S): 41-49
被引量:72
标识
DOI:10.1097/shk.0000000000001044
摘要
ABSTRACT Several adverse events have been associated with the infusion of hemoglobin-based oxygen carriers (HBOCs), including transient hypertension, gastrointestinal, pancreatic/liver enzyme elevation, and cardiac/renal injury in humans. Although several mechanisms have been suggested, the basis of HBOC toxicity is still poorly understood. Scavenging of vascular endothelial nitric oxide (NO) and heme-mediated oxidative side reactions are thought to be the major causes of toxicity. However, based on more recent preclinical studies, oxidative pathways (driven by the heme prosthetic group) seem to play a more prominent role in the overall toxicity of free Hb or HBOCs. HBOCs display a diversity of physicochemical properties, including molecular size/cross-linking characteristics leading to differences in oxygen affinity, allosteric, redox properties, and even oxidative inactivation by protein/heme clearing mechanisms. These diverse characteristics can therefore be manipulated independently, leaving open the possibility of engineering a safe and effective HBOC. To date, several antioxidative strategies have been proposed to counteract the redox side reactions of current generation HBOCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI