Development of a non‐invasive algorithm with transient elastography (Fibroscan) and serum test formula for advanced liver fibrosis in chronic hepatitis B

瞬态弹性成像 医学 算法 内科学 胃肠病学 纤维化 接收机工作特性 慢性肝炎 置信区间 乙型肝炎 队列 肝纤维化 免疫学 病毒 计算机科学
作者
Grace Lai‐Hung Wong,Vincent Wai‐Sun Wong,Paul Cheung‐Lung Choi,Anthony W.H. Chan,Hoi‐Hung Chan
出处
期刊:Alimentary Pharmacology & Therapeutics [Wiley]
卷期号:31 (10): 1095-1103 被引量:131
标识
DOI:10.1111/j.1365-2036.2010.04276.x
摘要

Aliment Pharmacol Ther 31 , 1095–1103 Summary Background Non‐invasive assessments of liver fibrosis in chronic hepatitis B were well established. Aim To develop a combined algorithm of liver stiffness measurement (LSM) and serum test formula to predict advanced liver fibrosis in chronic hepatitis B. Methods We reported an alanine aminotransferase (AST)‐based LSM algorithm for liver fibrosis in 156 chronic hepatitis B patients, which formed the training cohort to evaluate the performance of APRI (AST‐to‐platelet‐ratio‐index), Forns index, FIB‐4 and Fibroindex against liver histology. The best combined LSM‐serum formula algorithm would be validated in another cohort of 82 chronic hepatitis B patients. Results In the training cohort, LSM has the best performance of diagnosing advanced (≥F3) fibrosis [area under the receiver operating characteristics curve (AUROC) 0.88, 95% confidence interval (CI) 0.85–0.91], while Forns index has the best performance among the various serum test formulae (AUROC 0.70, 95% CI 0.62–0.78). In the combined algorithm, low LSM or low Forns index could be used to exclude advanced fibrosis as both of them had high sensitivity (>90%). To confirm advanced fibrosis, agreement between high LSM and high Forns index could improve the specificity (from 99% to 100% and from 87% to 98% in the training and validation cohorts respectively). Conclusion A combined LSM–Forns algorithm can improve the accuracy to predict advanced liver fibrosis in chronic hepatitis B.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andy发布了新的文献求助10
2秒前
清浅发布了新的文献求助10
2秒前
2秒前
hhhyyyy完成签到,获得积分10
2秒前
3秒前
Goyounjung发布了新的文献求助10
3秒前
紫瓜发布了新的文献求助30
3秒前
3秒前
坚定的草丛完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
wanci应助HonneursW采纳,获得10
5秒前
顾矜应助copper采纳,获得10
5秒前
一颗糖完成签到 ,获得积分10
5秒前
6秒前
素简发布了新的文献求助10
7秒前
7秒前
1+1发布了新的文献求助10
8秒前
123456发布了新的文献求助20
8秒前
独特元蝶完成签到,获得积分20
8秒前
8秒前
123完成签到,获得积分20
8秒前
liuwy发布了新的文献求助10
9秒前
9秒前
徐老师完成签到 ,获得积分10
10秒前
独特元蝶发布了新的文献求助10
11秒前
傅。完成签到,获得积分10
11秒前
小何发布了新的文献求助10
12秒前
龍Ryu发布了新的文献求助10
12秒前
深情安青应助祝你开心采纳,获得10
12秒前
qu完成签到 ,获得积分20
13秒前
13秒前
深情安青应助xzm采纳,获得10
13秒前
14秒前
轨迹应助Queena采纳,获得10
14秒前
14秒前
瓜6发布了新的文献求助10
14秒前
15秒前
123发布了新的文献求助30
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082