Development of a non‐invasive algorithm with transient elastography (Fibroscan) and serum test formula for advanced liver fibrosis in chronic hepatitis B

瞬态弹性成像 医学 算法 内科学 胃肠病学 纤维化 接收机工作特性 慢性肝炎 置信区间 乙型肝炎 队列 肝纤维化 免疫学 病毒 计算机科学
作者
Grace Lai‐Hung Wong,Vincent Wai‐Sun Wong,Paul Cheung‐Lung Choi,Anthony W.H. Chan,Hoi‐Hung Chan
出处
期刊:Alimentary Pharmacology & Therapeutics [Wiley]
卷期号:31 (10): 1095-1103 被引量:131
标识
DOI:10.1111/j.1365-2036.2010.04276.x
摘要

Aliment Pharmacol Ther 31 , 1095–1103 Summary Background Non‐invasive assessments of liver fibrosis in chronic hepatitis B were well established. Aim To develop a combined algorithm of liver stiffness measurement (LSM) and serum test formula to predict advanced liver fibrosis in chronic hepatitis B. Methods We reported an alanine aminotransferase (AST)‐based LSM algorithm for liver fibrosis in 156 chronic hepatitis B patients, which formed the training cohort to evaluate the performance of APRI (AST‐to‐platelet‐ratio‐index), Forns index, FIB‐4 and Fibroindex against liver histology. The best combined LSM‐serum formula algorithm would be validated in another cohort of 82 chronic hepatitis B patients. Results In the training cohort, LSM has the best performance of diagnosing advanced (≥F3) fibrosis [area under the receiver operating characteristics curve (AUROC) 0.88, 95% confidence interval (CI) 0.85–0.91], while Forns index has the best performance among the various serum test formulae (AUROC 0.70, 95% CI 0.62–0.78). In the combined algorithm, low LSM or low Forns index could be used to exclude advanced fibrosis as both of them had high sensitivity (>90%). To confirm advanced fibrosis, agreement between high LSM and high Forns index could improve the specificity (from 99% to 100% and from 87% to 98% in the training and validation cohorts respectively). Conclusion A combined LSM–Forns algorithm can improve the accuracy to predict advanced liver fibrosis in chronic hepatitis B.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咸柴完成签到,获得积分10
刚刚
Chenzhs完成签到,获得积分10
刚刚
yhp完成签到 ,获得积分10
1秒前
Auriga完成签到,获得积分10
1秒前
wzx发布了新的文献求助10
2秒前
2秒前
SY发布了新的文献求助10
3秒前
小马甲应助aaaaa22222采纳,获得10
3秒前
3秒前
laitomgpaomian完成签到 ,获得积分10
3秒前
zhu完成签到,获得积分10
4秒前
hsj完成签到,获得积分10
4秒前
麦瑞完成签到 ,获得积分20
4秒前
顾宇完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
所所应助坚强的笑天采纳,获得10
5秒前
ggdio发布了新的文献求助10
5秒前
Hello应助馨妈采纳,获得10
6秒前
JamesPei应助馨妈采纳,获得10
6秒前
7秒前
bkagyin应助L罗1采纳,获得10
7秒前
可爱的函函应助JL采纳,获得10
7秒前
呀呀呀完成签到,获得积分10
7秒前
充电宝应助焱冰采纳,获得10
7秒前
科研通AI6应助瘦瘦的南蕾采纳,获得10
7秒前
小青椒应助风清扬采纳,获得30
8秒前
8秒前
天天完成签到,获得积分10
9秒前
23XZYZN发布了新的文献求助30
9秒前
梅子完成签到 ,获得积分10
10秒前
上官若男应助张磊采纳,获得10
10秒前
清和漾完成签到,获得积分10
10秒前
Di发布了新的文献求助10
10秒前
wwe完成签到,获得积分10
10秒前
丘比特应助顾宇采纳,获得10
10秒前
10秒前
Yi完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483532
求助须知:如何正确求助?哪些是违规求助? 4584237
关于积分的说明 14395715
捐赠科研通 4513936
什么是DOI,文献DOI怎么找? 2473733
邀请新用户注册赠送积分活动 1459777
关于科研通互助平台的介绍 1433177