Development of a non‐invasive algorithm with transient elastography (Fibroscan) and serum test formula for advanced liver fibrosis in chronic hepatitis B

瞬态弹性成像 医学 算法 内科学 胃肠病学 纤维化 接收机工作特性 慢性肝炎 置信区间 乙型肝炎 队列 肝纤维化 免疫学 病毒 计算机科学
作者
Grace Lai‐Hung Wong,Vincent Wai‐Sun Wong,Paul Cheung‐Lung Choi,Anthony W.H. Chan,Hoi‐Hung Chan
出处
期刊:Alimentary Pharmacology & Therapeutics [Wiley]
卷期号:31 (10): 1095-1103 被引量:131
标识
DOI:10.1111/j.1365-2036.2010.04276.x
摘要

Aliment Pharmacol Ther 31 , 1095–1103 Summary Background Non‐invasive assessments of liver fibrosis in chronic hepatitis B were well established. Aim To develop a combined algorithm of liver stiffness measurement (LSM) and serum test formula to predict advanced liver fibrosis in chronic hepatitis B. Methods We reported an alanine aminotransferase (AST)‐based LSM algorithm for liver fibrosis in 156 chronic hepatitis B patients, which formed the training cohort to evaluate the performance of APRI (AST‐to‐platelet‐ratio‐index), Forns index, FIB‐4 and Fibroindex against liver histology. The best combined LSM‐serum formula algorithm would be validated in another cohort of 82 chronic hepatitis B patients. Results In the training cohort, LSM has the best performance of diagnosing advanced (≥F3) fibrosis [area under the receiver operating characteristics curve (AUROC) 0.88, 95% confidence interval (CI) 0.85–0.91], while Forns index has the best performance among the various serum test formulae (AUROC 0.70, 95% CI 0.62–0.78). In the combined algorithm, low LSM or low Forns index could be used to exclude advanced fibrosis as both of them had high sensitivity (>90%). To confirm advanced fibrosis, agreement between high LSM and high Forns index could improve the specificity (from 99% to 100% and from 87% to 98% in the training and validation cohorts respectively). Conclusion A combined LSM–Forns algorithm can improve the accuracy to predict advanced liver fibrosis in chronic hepatitis B.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
只争朝夕应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
酸菜鱼火锅完成签到,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
summer应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
iNk应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得30
2秒前
2秒前
1111222完成签到,获得积分10
2秒前
2秒前
2秒前
赘婿应助imtoto采纳,获得10
2秒前
懒骨头兄应助科研通管家采纳,获得10
2秒前
晚来风与雪完成签到,获得积分10
2秒前
李热热发布了新的文献求助30
2秒前
孟德尔的豌豆完成签到,获得积分10
2秒前
lclu8515完成签到,获得积分10
3秒前
英俊的铭应助魔幻灵煌采纳,获得10
3秒前
3秒前
鱼YUYU关注了科研通微信公众号
3秒前
3秒前
桐桐应助wuran采纳,获得10
3秒前
nczpf2010发布了新的文献求助10
4秒前
4秒前
4秒前
wendy完成签到,获得积分10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629618
求助须知:如何正确求助?哪些是违规求助? 4720333
关于积分的说明 14970297
捐赠科研通 4787673
什么是DOI,文献DOI怎么找? 2556435
邀请新用户注册赠送积分活动 1517561
关于科研通互助平台的介绍 1478251