Multi-objective optimization methods in novel drug design

多目标优化 帕累托原理 计算机科学 排名(信息检索) 管理科学 生化工程 机器学习 数学优化 人工智能 运筹学 数学 工程类
作者
George Lambrinidis,Anna Tsantili‐Kakoulidou
出处
期刊:Expert Opinion on Drug Discovery [Taylor & Francis]
卷期号:16 (6): 647-658 被引量:38
标识
DOI:10.1080/17460441.2021.1867095
摘要

Introduction: In multi-objective drug design, optimization gains importance, being upgraded to a discipline that attracts its own research. Current strategies are broadly classified into single - objective optimization (SOO) and multi-objective optimization (MOO).Areas covered: Starting with SOO and the ways used to incorporate multiple criteria into it, the present review focuses on MOO techniques, their comparison, advantages, and restrictions. Pareto analysis and the concept of dominance stand in the core of MOO. The Pareto front, Pareto ranking, and limitations of Pareto-based methods, due to high dimensions and data uncertainty, are outlined. Desirability functions and the weighted sum approaches are described as stand-alone techniques to transform the MOO problem to SOO or in combination with pareto analysis and evolutionary algorithms. Representative applications in different drug research areas are also discussed.Expert opinion: Despite their limitations, the use of combined MOO techniques, as well as being complementary to SOO or in conjunction with artificial intelligence, contributes dramatically to efficient drug design, assisting decisions and increasing success probabilities. For multi-target drug design, optimization is supported by network approaches, while applicability of MOO to other fields like drug technology or biological complexity opens new perspectives in the interrelated fields of medicinal chemistry and molecular biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助单小芫采纳,获得10
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
EASA发布了新的文献求助10
2秒前
2秒前
3秒前
emm发布了新的文献求助10
4秒前
内向乾完成签到,获得积分10
4秒前
小蘑菇应助小唐采纳,获得10
4秒前
blank12发布了新的文献求助10
4秒前
5秒前
sundaytan完成签到,获得积分10
5秒前
5秒前
5秒前
酷炫小懒虫应助喻踏歌采纳,获得10
6秒前
nina发布了新的文献求助10
7秒前
虚幻盼雁完成签到 ,获得积分10
7秒前
zheng发布了新的文献求助10
7秒前
顺心夜阑发布了新的文献求助10
7秒前
7秒前
孟婆的碗发布了新的文献求助10
7秒前
8秒前
song发布了新的文献求助10
9秒前
中级中级发布了新的文献求助10
9秒前
养乐多发布了新的文献求助10
10秒前
10秒前
11秒前
万能图书馆应助jinzheng采纳,获得10
12秒前
汉堡包应助芝士棒猪采纳,获得10
12秒前
12秒前
丘奇发布了新的文献求助10
12秒前
13秒前
沉默是金发布了新的文献求助10
13秒前
gbw123完成签到,获得积分10
13秒前
123发布了新的文献求助10
14秒前
舒适的星月完成签到,获得积分10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978729
求助须知:如何正确求助?哪些是违规求助? 3522741
关于积分的说明 11214658
捐赠科研通 3260224
什么是DOI,文献DOI怎么找? 1799815
邀请新用户注册赠送积分活动 878676
科研通“疑难数据库(出版商)”最低求助积分说明 807052