适体
离解常数
化学
动力学
受体-配体动力学
生物传感器
结合
胶体金
纳米颗粒
离解(化学)
生物物理学
纳米技术
材料科学
物理化学
生物化学
生物
分子生物学
数学分析
物理
受体
量子力学
数学
作者
Xueqian Chen,Fabio Lisi,Padmavathy Bakthavathsalam,Guillaume Longatte,Sharmin Hoque,Richard D. Tilley,J. Justin Gooding
出处
期刊:ACS Sensors
[American Chemical Society]
日期:2020-12-09
卷期号:6 (2): 538-545
被引量:25
标识
DOI:10.1021/acssensors.0c02212
摘要
Knowledge of the interaction between aptamer and protein is integral to the design and development of aptamer-based biosensors. Nanoparticles functionalized with aptamers are commonly used in these kinds of sensors. As such, studies into how the number of aptamers on the nanoparticle surface influence both kinetics and thermodynamics of the binding interaction are required. In this study, aptamers specific for interferon gamma (IFN-γ) were immobilized on the surface of gold nanoparticles (AuNPs), and the effect of surface coverage of aptamer on the binding interaction with its target was investigated using fluorescence spectroscopy. The number of aptamers were adjusted from an average of 9.6 to 258 per particle. The binding isotherm between AuNPs–aptamer conjugate and protein was modeled with the Hill-Langmuir equation, and the determined equilibrium dissociation constant (K′D) decreased 10-fold when increasing the coverage of aptamer. The kinetics of the reaction as a function of coverage of aptamer were also investigated, including the association rate constant (kon) and the dissociation rate constant (koff). The AuNPs–aptamer conjugate with 258 aptamers per particle had the highest kon, while the koff was similar for AuNPs–aptamer conjugates with different surface coverages. Therefore, the surface coverage of aptamers on AuNPs affects both the thermodynamics and the kinetics of the binding. The AuNPs–aptamer conjugate with the highest surface coverage is the most favorable in biosensors considering the limit of detection, sensitivity, and response time of the assay. These findings deepen our understanding of the interaction between aptamer and target protein on the particle surface, which is important to both improve the scientific design and increase the application of aptamer–nanoparticle based biosensor.
科研通智能强力驱动
Strongly Powered by AbleSci AI