微塑料
雨水
地表径流
环境科学
湿地
沉积物
污染
人工湿地
环境工程
入口
水污染
环境化学
水文学(农业)
废水
生态学
地质学
海洋学
化学
古生物学
岩土工程
生物
作者
Shima Ziajahromi,Darren Drapper,Andy Hornbuckle,Llew Rintoul,Frédéric D.L. Leusch
标识
DOI:10.1016/j.scitotenv.2019.136356
摘要
Synthetic rubber particles released from car tyres are expected to be an important type of microplastics in the environment, with road runoff and stormwater likely to transport tyre particles to the aquatic environment. Stormwater treatment wetlands are one of the key methods for treating road runoff and stormwater, but the presence and concentration of synthetic rubber microplastics from tyre particles in wetlands are largely unknown. In addition, constructed floating wetlands can be built using recycled PET plastic bottles, raising concerns about potential release of microplastics to the environment. In this study, we measured the concentrations of microplastics in water and sediment from the inlet and outlet of a stormwater floating treatment wetland on Queensland's Gold Coast. An average of 0.9 ± 0.3 and 4.0 ± 2.4 microplastic particles/L were detected in the water phase in the inlet and outlet samples, respectively. The sediment contained an average of 595 ± 120 and 320 ± 42 microplastic particles/kg dry sediment in inlet and outlet sediments, respectively. Between 15 and 38% of microplastics in the sediment were identified by FTIR as synthetic rubber-carbon filled particles, most likely derived from car tyres. The presence of synthetic rubber microplastics confirms that tyres can contribute to microplastic pollution in stormwater, with road runoff likely to be an important pathway. No microplastics with the same characteristics and polymer composition as the floating wetland construction material were detected in the water and sediment samples, indicating that the microplastics in the water and sediment detected here did not originate from the floating wetland's material. However, further investigation of older treatment wetlands is required to better understand the potential role of floating treatment wetlands as a source of microplastics.
科研通智能强力驱动
Strongly Powered by AbleSci AI