高光谱成像
环境科学
城市化
降维
计算机科学
水质
特征选择
遥感
机器学习
地理
生态学
经济增长
生物
经济
作者
Sarigai Sarigai,Yang Ji,Alicia Y. Zhou,Liusheng Han,Yong Li,Yichun Xie
标识
DOI:10.1016/j.envpol.2020.116166
摘要
Economic development, population growth, industrialization, and urbanization dramatically increase urban water quality deterioration, and thereby endanger human life and health. However, there are not many efficient methods and techniques to monitor urban black and odorous water (BOW) pollution. Our research aims at identifying primary indicators of urban BOW through their spectral characteristics and differentiation. This research combined ground in-situ water quality data with ground hyperspectral data collected from main urban BOWs in Guangzhou, China, and integrated factorial data mining and machine learning techniques to investigate how to monitor urban BOW. Eight key water quality parameters at 52 sample sites were used to retrieve three latent dimensions of urban BOW quality by factorial data mining. The synchronically measured hyperspectral bands along with the band combinations were examined by the machine learning technique, Lasso regression, to identify the most correlated bands and band combinations, over which three multiple regression models were fitted against three latent water quality indicators to determine which spectral bands were highly sensitive to three dimensions of urban BOW pollution. The findings revealed that the many sensitive bands were concentrated in higher hyperspectral band ranges, which supported the unique contribution of hyperspectral data for monitoring water quality. In addition, this integrated data mining and machine learning approach overcame the limitations of conventional band selection, which focus on a limited number of band ratios, band differences, and reflectance bands in the lower range of infrared region. The outcome also indicated that the integration of dimensionality reduction with feature selection shows good potential for monitoring urban BOW. This new analysis framework can be used in urban BOW monitoring and provides scientific data for policymakers to monitor it.
科研通智能强力驱动
Strongly Powered by AbleSci AI