Monitoring urban black-odorous water by using hyperspectral data and machine learning

高光谱成像 环境科学 城市化 降维 计算机科学 水质 特征选择 遥感 机器学习 地理 生态学 经济增长 生物 经济
作者
Sarigai Sarigai,Yang Ji,Alicia Y. Zhou,Liusheng Han,Yong Li,Yichun Xie
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:269: 116166-116166 被引量:32
标识
DOI:10.1016/j.envpol.2020.116166
摘要

Economic development, population growth, industrialization, and urbanization dramatically increase urban water quality deterioration, and thereby endanger human life and health. However, there are not many efficient methods and techniques to monitor urban black and odorous water (BOW) pollution. Our research aims at identifying primary indicators of urban BOW through their spectral characteristics and differentiation. This research combined ground in-situ water quality data with ground hyperspectral data collected from main urban BOWs in Guangzhou, China, and integrated factorial data mining and machine learning techniques to investigate how to monitor urban BOW. Eight key water quality parameters at 52 sample sites were used to retrieve three latent dimensions of urban BOW quality by factorial data mining. The synchronically measured hyperspectral bands along with the band combinations were examined by the machine learning technique, Lasso regression, to identify the most correlated bands and band combinations, over which three multiple regression models were fitted against three latent water quality indicators to determine which spectral bands were highly sensitive to three dimensions of urban BOW pollution. The findings revealed that the many sensitive bands were concentrated in higher hyperspectral band ranges, which supported the unique contribution of hyperspectral data for monitoring water quality. In addition, this integrated data mining and machine learning approach overcame the limitations of conventional band selection, which focus on a limited number of band ratios, band differences, and reflectance bands in the lower range of infrared region. The outcome also indicated that the integration of dimensionality reduction with feature selection shows good potential for monitoring urban BOW. This new analysis framework can be used in urban BOW monitoring and provides scientific data for policymakers to monitor it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zJx丶发布了新的文献求助10
刚刚
desperado完成签到 ,获得积分10
1秒前
榜一大哥的负担完成签到 ,获得积分10
1秒前
奈何人生发布了新的文献求助10
1秒前
1秒前
Yang完成签到,获得积分10
1秒前
冰冰完成签到,获得积分20
2秒前
wufel完成签到,获得积分10
2秒前
JKJ发布了新的文献求助10
2秒前
121发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
李健应助张润泽采纳,获得10
4秒前
IETPer发布了新的文献求助10
4秒前
4秒前
欣喜访旋发布了新的文献求助10
4秒前
5秒前
汉堡包应助ouyggg采纳,获得10
5秒前
冰冰发布了新的文献求助10
5秒前
背后的桐发布了新的文献求助10
6秒前
小二郎应助lzx采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
昏睡的蟠桃应助杨旭采纳,获得100
8秒前
Change_Jing完成签到,获得积分10
8秒前
8秒前
沉海发布了新的文献求助30
9秒前
9秒前
杭啊发布了新的文献求助10
10秒前
曾经电源完成签到,获得积分10
11秒前
hx完成签到 ,获得积分10
11秒前
CAOHOU应助满眼星辰采纳,获得10
11秒前
12秒前
24816848完成签到,获得积分10
12秒前
陈道哥完成签到 ,获得积分10
12秒前
13秒前
三七完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635