Monitoring urban black-odorous water by using hyperspectral data and machine learning

高光谱成像 环境科学 城市化 降维 计算机科学 水质 特征选择 遥感 机器学习 地理 生态学 经济增长 生物 经济
作者
Sarigai Sarigai,Yang Ji,Alicia Y. Zhou,Liusheng Han,Yong Li,Yichun Xie
出处
期刊:Environmental Pollution [Elsevier]
卷期号:269: 116166-116166 被引量:32
标识
DOI:10.1016/j.envpol.2020.116166
摘要

Economic development, population growth, industrialization, and urbanization dramatically increase urban water quality deterioration, and thereby endanger human life and health. However, there are not many efficient methods and techniques to monitor urban black and odorous water (BOW) pollution. Our research aims at identifying primary indicators of urban BOW through their spectral characteristics and differentiation. This research combined ground in-situ water quality data with ground hyperspectral data collected from main urban BOWs in Guangzhou, China, and integrated factorial data mining and machine learning techniques to investigate how to monitor urban BOW. Eight key water quality parameters at 52 sample sites were used to retrieve three latent dimensions of urban BOW quality by factorial data mining. The synchronically measured hyperspectral bands along with the band combinations were examined by the machine learning technique, Lasso regression, to identify the most correlated bands and band combinations, over which three multiple regression models were fitted against three latent water quality indicators to determine which spectral bands were highly sensitive to three dimensions of urban BOW pollution. The findings revealed that the many sensitive bands were concentrated in higher hyperspectral band ranges, which supported the unique contribution of hyperspectral data for monitoring water quality. In addition, this integrated data mining and machine learning approach overcame the limitations of conventional band selection, which focus on a limited number of band ratios, band differences, and reflectance bands in the lower range of infrared region. The outcome also indicated that the integration of dimensionality reduction with feature selection shows good potential for monitoring urban BOW. This new analysis framework can be used in urban BOW monitoring and provides scientific data for policymakers to monitor it.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
小旋风完成签到,获得积分10
3秒前
3秒前
蓝天发布了新的文献求助10
4秒前
SciGPT应助含糊的冰安采纳,获得10
5秒前
5秒前
zhangjin2969发布了新的文献求助10
6秒前
renovel发布了新的文献求助20
6秒前
7秒前
一二发布了新的文献求助10
7秒前
斯文败类应助肖善若采纳,获得10
7秒前
哈哈哈完成签到,获得积分10
8秒前
锅包肉发布了新的文献求助10
8秒前
记忆里的阳光完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
肖旻发布了新的文献求助10
10秒前
11秒前
11秒前
jiahao完成签到,获得积分10
11秒前
热心翠霜发布了新的文献求助10
12秒前
12秒前
香蕉觅云应助XiaoZhu采纳,获得10
13秒前
沖牧野完成签到,获得积分10
13秒前
14秒前
骤雨红尘发布了新的文献求助10
14秒前
14秒前
15秒前
麻瓜X发布了新的文献求助10
16秒前
zlzl完成签到 ,获得积分10
16秒前
li完成签到,获得积分10
16秒前
17秒前
冰可乐完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770404
求助须知:如何正确求助?哪些是违规求助? 5584883
关于积分的说明 15424186
捐赠科研通 4904015
什么是DOI,文献DOI怎么找? 2638456
邀请新用户注册赠送积分活动 1586286
关于科研通互助平台的介绍 1541405