Monitoring urban black-odorous water by using hyperspectral data and machine learning

高光谱成像 环境科学 城市化 降维 计算机科学 水质 特征选择 遥感 机器学习 地理 生态学 经济增长 生物 经济
作者
Sarigai Sarigai,Yang Ji,Alicia Y. Zhou,Liusheng Han,Yong Li,Yichun Xie
出处
期刊:Environmental Pollution [Elsevier]
卷期号:269: 116166-116166 被引量:32
标识
DOI:10.1016/j.envpol.2020.116166
摘要

Economic development, population growth, industrialization, and urbanization dramatically increase urban water quality deterioration, and thereby endanger human life and health. However, there are not many efficient methods and techniques to monitor urban black and odorous water (BOW) pollution. Our research aims at identifying primary indicators of urban BOW through their spectral characteristics and differentiation. This research combined ground in-situ water quality data with ground hyperspectral data collected from main urban BOWs in Guangzhou, China, and integrated factorial data mining and machine learning techniques to investigate how to monitor urban BOW. Eight key water quality parameters at 52 sample sites were used to retrieve three latent dimensions of urban BOW quality by factorial data mining. The synchronically measured hyperspectral bands along with the band combinations were examined by the machine learning technique, Lasso regression, to identify the most correlated bands and band combinations, over which three multiple regression models were fitted against three latent water quality indicators to determine which spectral bands were highly sensitive to three dimensions of urban BOW pollution. The findings revealed that the many sensitive bands were concentrated in higher hyperspectral band ranges, which supported the unique contribution of hyperspectral data for monitoring water quality. In addition, this integrated data mining and machine learning approach overcame the limitations of conventional band selection, which focus on a limited number of band ratios, band differences, and reflectance bands in the lower range of infrared region. The outcome also indicated that the integration of dimensionality reduction with feature selection shows good potential for monitoring urban BOW. This new analysis framework can be used in urban BOW monitoring and provides scientific data for policymakers to monitor it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助李争采纳,获得10
1秒前
万能图书馆应助Jacob采纳,获得10
2秒前
hqq2312发布了新的文献求助10
3秒前
研友_VZG7GZ应助mk采纳,获得10
3秒前
落梦完成签到 ,获得积分20
4秒前
duang完成签到,获得积分10
4秒前
5秒前
hgl发布了新的文献求助30
6秒前
6秒前
调皮的千万完成签到,获得积分10
7秒前
epmoct完成签到 ,获得积分10
8秒前
8秒前
CC完成签到,获得积分10
9秒前
汉堡包应助yy采纳,获得10
9秒前
烟花应助爱打篮球的坤坤采纳,获得10
10秒前
廖骏发布了新的文献求助10
11秒前
11秒前
若雪成依完成签到 ,获得积分10
11秒前
shime完成签到,获得积分10
12秒前
李争完成签到,获得积分10
13秒前
zhang完成签到,获得积分20
13秒前
baby的跑男完成签到,获得积分10
13秒前
13秒前
14秒前
大胆的弼完成签到,获得积分10
14秒前
mk发布了新的文献求助10
14秒前
hqq2312完成签到,获得积分10
15秒前
zzq发布了新的文献求助10
15秒前
阿冰发布了新的文献求助10
18秒前
无心的冰之完成签到,获得积分10
18秒前
18秒前
SMANHAN发布了新的文献求助10
20秒前
XSB完成签到,获得积分10
20秒前
777发布了新的文献求助10
20秒前
ryiii发布了新的文献求助30
21秒前
Shaw完成签到,获得积分10
22秒前
XXX完成签到,获得积分10
22秒前
无限雨南完成签到,获得积分10
23秒前
陈陈完成签到 ,获得积分10
23秒前
阿和完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162790
求助须知:如何正确求助?哪些是违规求助? 2813724
关于积分的说明 7901861
捐赠科研通 2473365
什么是DOI,文献DOI怎么找? 1316788
科研通“疑难数据库(出版商)”最低求助积分说明 631520
版权声明 602175