Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: A proof of concept study

脂肪性肝炎 脂肪肝 肝活检 聚糖 肝硬化 人口 纤维化 医学 肝细胞癌 疾病 病理 活检 胃肠病学 内科学 生物 生物化学 环境卫生 糖蛋白
作者
Nikolaos Perakakis,Stergios A. Pοlyzos,Alireza Yazdani,Aleix Sala‐Vila,Jannis Kountouras,Athanasios D. Anastasilakis,Christos S. Mantzoros
出处
期刊:Metabolism-clinical and Experimental [Elsevier]
卷期号:101: 154005-154005 被引量:102
标识
DOI:10.1016/j.metabol.2019.154005
摘要

Non-alcoholic fatty liver disease (NAFLD) affects 25-30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive diagnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in peripheral blood and with the use of different machine learning methods.We performed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects and 31 patients with biopsy-proven NAFLD (15 with NAFL and 16 with NASH). The data from the above measurements combined with measurements of 4 hormonal parameters were analyzed with two different platforms and five different machine learning tools.365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatography. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination (RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differentiate with very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, a model consisting of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy).We propose novel models utilizing lipids, hormones and glycans that can diagnose with high accuracy the presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the presence of liver fibrosis. Both models should be further trained prospectively and validated in large independent cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hongdongxiang发布了新的文献求助10
1秒前
1秒前
Sinclairsun发布了新的文献求助10
3秒前
wuminga0000发布了新的文献求助10
4秒前
ccp完成签到,获得积分10
6秒前
泡泡发布了新的文献求助10
7秒前
黄婷完成签到,获得积分10
7秒前
开心的抽屉完成签到,获得积分10
8秒前
无名花生发布了新的文献求助20
8秒前
Polymer72应助Elvira采纳,获得10
9秒前
wangdh完成签到,获得积分10
10秒前
10秒前
寒矜发布了新的文献求助30
11秒前
fan发布了新的文献求助10
12秒前
安详的从筠完成签到,获得积分10
13秒前
独特飞鸟完成签到 ,获得积分10
14秒前
丘比特应助震动的听枫采纳,获得10
14秒前
鬼才之眼发布了新的文献求助10
17秒前
激动的人杰完成签到 ,获得积分10
20秒前
ZJ发布了新的文献求助10
22秒前
记不清发布了新的文献求助70
23秒前
番茄发布了新的文献求助10
23秒前
李健应助江瀛采纳,获得10
25秒前
26秒前
东阳完成签到,获得积分10
26秒前
27秒前
28秒前
28秒前
fay发布了新的文献求助10
30秒前
可爱的函函应助卫海亦采纳,获得10
30秒前
31秒前
32秒前
Lin完成签到,获得积分10
32秒前
wuda发布了新的文献求助10
32秒前
35秒前
kuki完成签到,获得积分20
36秒前
郑开司09发布了新的文献求助10
37秒前
37秒前
123发布了新的文献求助10
38秒前
寒矜完成签到 ,获得积分20
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351875
求助须知:如何正确求助?哪些是违规求助? 2977247
关于积分的说明 8678455
捐赠科研通 2658272
什么是DOI,文献DOI怎么找? 1455628
科研通“疑难数据库(出版商)”最低求助积分说明 674001
邀请新用户注册赠送积分活动 664538