Identifying Metallic Transition-Metal Dichalcogenides for Hydrogen Evolution through Multilevel High-Throughput Calculations and Machine Learning

空位缺陷 电负性 硫系化合物 离域电子 价电子 材料科学 过渡金属 催化作用 电子结构 化学物理 密度泛函理论 带隙 化学 电子 计算化学 结晶学 物理 冶金 生物化学 光电子学 有机化学 量子力学
作者
Nian Ran,Bo Sun,Wujie Qiu,Erhong Song,Ting-Wei Chen,Jianjun Liu
出处
期刊:Journal of Physical Chemistry Letters [American Chemical Society]
卷期号:12 (8): 2102-2111 被引量:62
标识
DOI:10.1021/acs.jpclett.0c03839
摘要

High-performance electrocatalysts not only exhibit high catalytic activity but also have sufficient thermodynamic stability and electronic conductivity. Although metallic 1T-phase MoS2 and WS2 have been successfully identified to have high activity for hydrogen evolution reaction, designing more extensive metallic transition-metal dichalcogenides (TMDs) faces a large challenge because of the lack of a full understanding of electronic and composition attributes related to catalytic activity. In this work, we carried out systematic high-throughput calculation screening for all possible existing two-dimensional TMD (2D-TMD) materials to obtain high-performance hydrogen evolution reaction (HER) electrocatalysts by using a few important criteria, such as zero band gap, highest thermodynamic stability among available phases, low vacancy formation energy, and approximately zero hydrogen adsorption energy. A series of materials—perfect monolayer VS2 and NiS2, transition-metal ion vacancy (TM-vacancy) ZrTe2 and PdTe2, chalcogenide ion vacancy (X-vacancy) MnS2, CrSe2, TiTe2, and VSe2—have been identified to have catalytic activity comparable with that of Pt(111). More importantly, electronic structural analysis indicates active electrons induced by defects are mostly delocalized in the nearest-neighbor and next-nearest neighbor range, rather than a single-atom active site. Combined with the machine learning method, the HER-catalytic activity of metallic phase 2D-TMD materials can be described quantitatively with local electronegativity (0.195·LEf + 0.205·LEs) and valence electron number (Vtmx), where the descriptor is ΔGH* = 0.093 – (0.195·LEf + 0.205·LEs) – 0.15·Vtmx.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iceice完成签到,获得积分10
刚刚
黄瑾完成签到,获得积分10
刚刚
愉快的代玉完成签到,获得积分10
刚刚
刚刚
考拉完成签到 ,获得积分10
刚刚
Jasper应助禹山河采纳,获得10
1秒前
mldxy关注了科研通微信公众号
1秒前
1秒前
2秒前
yijian完成签到,获得积分10
2秒前
cheire完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
小太爷灬发布了新的文献求助10
4秒前
善学以致用应助hhan采纳,获得10
4秒前
cccccccc完成签到,获得积分20
4秒前
黄瑾发布了新的文献求助200
4秒前
carat驳回了Y先生应助
4秒前
5秒前
5秒前
WK完成签到,获得积分10
6秒前
6秒前
三金发布了新的文献求助10
6秒前
7秒前
我不李解完成签到,获得积分10
8秒前
泽灵发布了新的文献求助10
8秒前
子啼当归完成签到,获得积分10
8秒前
8秒前
852应助Pyrene采纳,获得30
8秒前
8秒前
9秒前
9秒前
www应助咖啡不加糖采纳,获得10
9秒前
10秒前
cenlu完成签到,获得积分10
10秒前
王心心完成签到,获得积分10
10秒前
小太爷灬完成签到,获得积分10
10秒前
子啼当归发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959051
求助须知:如何正确求助?哪些是违规求助? 3505388
关于积分的说明 11123550
捐赠科研通 3237039
什么是DOI,文献DOI怎么找? 1788976
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802806