Mechanical memory in cells emerges from mechanotransduction with transcriptional feedback and epigenetic plasticity

机械转化 表观遗传学 神经科学 启动(农业) 生物 细胞骨架 可塑性 细胞生物学 转录因子 细胞 材料科学 遗传学 发芽 植物 复合材料 基因
作者
Jairaj Mathur,Vivek B. Shenoy,Amit Pathak
标识
DOI:10.1101/2020.03.20.000802
摘要

ABSTRACT Emerging evidence shows that cells are able to sense and store a memory of their past mechanical environment. Since existing mechanotransduction models are based on adhesion and cytoskeletal dynamics that occurs over seconds and minutes, they do not capture memory observed over days or weeks. We postulate that transcriptional activity and epigenetic plasticity, upstream of adhesion-based signaling, need to be invoked to explain long-term mechanical memory. Here, we present a theory for mechanical memory in cells governed by three key components. First, cells on a stiff matrix are primed by a transcriptional reinforcement of cytoskeletal signaling. Second, longer stiff-priming progressively produces more memory-regulating factors and reduces epigenetic plasticity. Third, when stiff-primed cells move to soft matrix, the reduced epigenetic plasticity blocks new transcription required for cellular adaptation to the new matrix. This stalled transcriptional state gives rise to memory. We validate this model against previous experimental findings of memory storage and decay in epithelial cell migration and stem cell differentiation. We also predict wide-ranging memory responses for different cell types of varying protein kinetics and priming conditions. This theoretical framework for mechanical memory expands the timescales of mechanotransduction captured by conventional models by integrating cytoskeletal signaling with transcriptional activity and epigenetic plasticity. Our model predictions explain mechanical memory and propose new experiments to test spatiotemporal regulation of cellular memory in diverse contexts ranging from cell differentiation to migration and growth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哟呵完成签到,获得积分10
1秒前
郭杰完成签到,获得积分10
1秒前
机智半双发布了新的文献求助10
1秒前
2秒前
左然然完成签到,获得积分10
2秒前
多动症姑息状态完成签到,获得积分10
2秒前
3秒前
糖糖糖唐完成签到,获得积分10
3秒前
小团子完成签到,获得积分10
3秒前
懒羊羊不吃糖完成签到,获得积分10
3秒前
4秒前
来来来完成签到 ,获得积分10
4秒前
4秒前
洪山老狗完成签到,获得积分10
4秒前
1997发布了新的文献求助30
5秒前
7秒前
7秒前
struggling2026完成签到 ,获得积分10
8秒前
曹博盛发布了新的文献求助10
8秒前
hz_sz完成签到,获得积分10
8秒前
烟花应助看不懂啊采纳,获得20
9秒前
杨振发布了新的文献求助10
9秒前
Cybele完成签到,获得积分10
10秒前
李健的小迷弟应助kkuang采纳,获得10
11秒前
Danish完成签到,获得积分10
12秒前
王雨薇应助乐观忆灵采纳,获得20
12秒前
科研通AI2S应助KEKE采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得30
13秒前
爱学习的婷完成签到 ,获得积分10
13秒前
Cloud应助科研通管家采纳,获得20
13秒前
大模型应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得20
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151134
求助须知:如何正确求助?哪些是违规求助? 2802621
关于积分的说明 7849140
捐赠科研通 2460009
什么是DOI,文献DOI怎么找? 1309425
科研通“疑难数据库(出版商)”最低求助积分说明 628915
版权声明 601757