已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mechanical memory in cells emerges from mechanotransduction with transcriptional feedback and epigenetic plasticity

机械转化 表观遗传学 神经科学 启动(农业) 生物 细胞骨架 可塑性 细胞生物学 转录因子 细胞 材料科学 遗传学 发芽 植物 复合材料 基因
作者
Jairaj Mathur,Vivek B. Shenoy,Amit Pathak
标识
DOI:10.1101/2020.03.20.000802
摘要

ABSTRACT Emerging evidence shows that cells are able to sense and store a memory of their past mechanical environment. Since existing mechanotransduction models are based on adhesion and cytoskeletal dynamics that occurs over seconds and minutes, they do not capture memory observed over days or weeks. We postulate that transcriptional activity and epigenetic plasticity, upstream of adhesion-based signaling, need to be invoked to explain long-term mechanical memory. Here, we present a theory for mechanical memory in cells governed by three key components. First, cells on a stiff matrix are primed by a transcriptional reinforcement of cytoskeletal signaling. Second, longer stiff-priming progressively produces more memory-regulating factors and reduces epigenetic plasticity. Third, when stiff-primed cells move to soft matrix, the reduced epigenetic plasticity blocks new transcription required for cellular adaptation to the new matrix. This stalled transcriptional state gives rise to memory. We validate this model against previous experimental findings of memory storage and decay in epithelial cell migration and stem cell differentiation. We also predict wide-ranging memory responses for different cell types of varying protein kinetics and priming conditions. This theoretical framework for mechanical memory expands the timescales of mechanotransduction captured by conventional models by integrating cytoskeletal signaling with transcriptional activity and epigenetic plasticity. Our model predictions explain mechanical memory and propose new experiments to test spatiotemporal regulation of cellular memory in diverse contexts ranging from cell differentiation to migration and growth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Persist发布了新的文献求助10
1秒前
wzzznh完成签到 ,获得积分10
3秒前
4秒前
Luke发布了新的文献求助20
4秒前
lyy完成签到 ,获得积分10
5秒前
海南完成签到 ,获得积分10
6秒前
7秒前
奋进的熊发布了新的文献求助10
9秒前
10秒前
善学以致用应助Cici采纳,获得10
10秒前
wzh完成签到 ,获得积分10
10秒前
22发布了新的文献求助10
11秒前
12秒前
不打烊吗发布了新的文献求助10
14秒前
14秒前
徐小发布了新的文献求助40
15秒前
15秒前
16秒前
18秒前
QWSS完成签到,获得积分20
18秒前
烟花应助山越山知采纳,获得10
18秒前
lonely发布了新的文献求助10
19秒前
12发布了新的文献求助10
19秒前
FashionBoy应助多多采纳,获得10
20秒前
21秒前
小颖发布了新的文献求助10
21秒前
LYSM应助yuyang采纳,获得10
22秒前
12关闭了12文献求助
22秒前
tanglu发布了新的文献求助10
23秒前
jiaojiao关注了科研通微信公众号
23秒前
quanwangertaiyu完成签到 ,获得积分10
26秒前
28秒前
汉堡包应助霸气安筠采纳,获得10
29秒前
30秒前
不打烊吗完成签到,获得积分10
30秒前
NexusExplorer应助小牛马阿欢采纳,获得20
31秒前
zsl完成签到,获得积分10
38秒前
38秒前
39秒前
初雪完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956819
求助须知:如何正确求助?哪些是违规求助? 3502880
关于积分的说明 11110559
捐赠科研通 3233882
什么是DOI,文献DOI怎么找? 1787644
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802172