Data Augmentation for Deep-Learning-Based Electroencephalography.

模式识别(心理学) 卷积神经网络 人工神经网络 机器学习 任务(项目管理) 脑-机接口
作者
Elnaz Lashgari,Dehua Liang,Uri Maoz
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:346: 108885- 被引量:48
标识
DOI:10.1016/j.jneumeth.2020.108885
摘要

Abstract Background Data augmentation (DA) has recently been demonstrated to achieve considerable performance gains for deep learning (DL)—increased accuracy and stability and reduced overfitting. Some electroencephalography (EEG) tasks suffer from low samples-to-features ratio, severely reducing DL effectiveness. DA with DL thus holds transformative promise for EEG processing, possibly like DL revolutionized computer vision, etc. New method We review trends and approaches to DA for DL in EEG to address: Which DA approaches exist and are common for which EEG tasks? What input features are used? And, what kind of accuracy gain can be expected? Results DA for DL on EEG begun 5 years ago and is steadily used more. We grouped DA techniques (noise addition, generative adversarial networks, sliding windows, sampling, Fourier transform, recombination of segmentation, and others) and EEG tasks (into seizure detection, sleep stages, motor imagery, mental workload, emotion recognition, motor tasks, and visual tasks). DA efficacy across techniques varied considerably. Noise addition and sliding windows provided the highest accuracy boost; mental workload most benefitted from DA. Sliding window, noise addition, and sampling methods most common for seizure detection, mental workload, and sleep stages, respectively. Comparing with existing methods Percent of decoding accuracy explained by DA beyond unaugmented accuracy varied between 8 % for recombination of segmentation and 36 % for noise addition and from 14 % for motor imagery to 56 % for mental workload—29 % on average. Conclusions DA increasingly used and considerably improved DL decoding accuracy on EEG. Additional publications—if adhering to our reporting guidelines—will facilitate more detailed analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
852应助Kenina采纳,获得10
5秒前
pluto应助鳗鱼发带采纳,获得10
5秒前
小桃子发布了新的文献求助10
5秒前
开始的开始完成签到,获得积分10
6秒前
过时的热狗完成签到,获得积分10
9秒前
10秒前
Owen应助YYC2022采纳,获得30
11秒前
干净依风完成签到,获得积分10
12秒前
12秒前
xue关注了科研通微信公众号
13秒前
wwyyccc完成签到,获得积分10
16秒前
小树发布了新的文献求助10
16秒前
16秒前
sweet完成签到,获得积分10
17秒前
19秒前
田様应助忧郁书双采纳,获得10
19秒前
Owen应助wwyyccc采纳,获得10
19秒前
21秒前
tutu发布了新的文献求助10
22秒前
晗月完成签到,获得积分10
22秒前
24秒前
AAAA完成签到,获得积分10
25秒前
852应助安安采纳,获得10
26秒前
小蘑菇应助专注的嵩采纳,获得10
26秒前
在水一方应助康超采纳,获得10
26秒前
搜集达人应助科研通管家采纳,获得10
27秒前
调研昵称发布了新的文献求助10
27秒前
研友_VZG7GZ应助科研通管家采纳,获得10
27秒前
七七应助科研通管家采纳,获得20
27秒前
27秒前
领导范儿应助科研通管家采纳,获得10
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
嗯哼应助科研通管家采纳,获得20
27秒前
27秒前
领导范儿应助科研通管家采纳,获得10
27秒前
李爱国应助糖小唐采纳,获得10
29秒前
秋天的向日葵完成签到,获得积分10
29秒前
Kitty发布了新的文献求助10
30秒前
险胜应助尊敬的语薇采纳,获得10
31秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3325757
求助须知:如何正确求助?哪些是违规求助? 2956361
关于积分的说明 8580480
捐赠科研通 2634354
什么是DOI,文献DOI怎么找? 1441917
科研通“疑难数据库(出版商)”最低求助积分说明 667974
邀请新用户注册赠送积分活动 654856