Network training parameters exploration for generating starting points of freeform reflective imaging system design based on machine learning

计算机科学 人工神经网络 功能(生物学) 人工智能 钥匙(锁) 系统设计 机器学习 计算机安全 进化生物学 生物 软件工程
作者
Wenchen Chen,Tong Yang,Dewen Cheng,Yongtian Wang
标识
DOI:10.1117/12.2573313
摘要

Using freeform optical surface in an imaging optical system is a revolution in the field of optical design. Introducing machine learning into freeform imaging optical design will significantly reduce the human effort and even beginners in optical design will be able to perform difficult design tasks. Machine learning has been successfully applied to the immediate generation of starting points with various system specifications for the design of freeform reflective imaging systems. However, the parameters used in the network training, which are the key points in the whole design framework, are determined without proper guidance, which may significantly affect the actual performance of the networks. In this paper, a comprehensive exploration of the training parameters of the neural network used for starting points generation of freeform reflective systems is conducted. The parameters include the number of layers, the number of nodes in the layers, the type of activation function, the type of loss function, the type of optimization algorithm, and the value of learning rate. A detailed comparison and analysis of different training parameters are demonstrated on the training results and the imaging performance of validation output systems with large amount of random system specifications input. Using the obtained results designers can choose proper parameters accordingly and get desired neural networks with shorter training time and better performance. The results also offer insight in the design of imaging systems with other system configurations and more advanced system specifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的虔纹完成签到 ,获得积分10
刚刚
1秒前
番茄爱喝粥完成签到,获得积分10
1秒前
CipherSage应助老王爱学习采纳,获得10
1秒前
Fa完成签到,获得积分10
1秒前
2秒前
kira完成签到,获得积分10
3秒前
舒服的茹嫣完成签到,获得积分20
3秒前
Stvn发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
明理的天蓝完成签到,获得积分10
5秒前
咳咳发布了新的文献求助10
5秒前
木叶研完成签到,获得积分10
5秒前
无花果应助通~采纳,获得10
5秒前
6秒前
7秒前
周助发布了新的文献求助10
7秒前
伯赏秋白完成签到,获得积分10
7秒前
慕青应助sunzhiyu233采纳,获得10
7秒前
Sherwin完成签到,获得积分10
7秒前
羽毛完成签到,获得积分20
8秒前
xiongjian发布了新的文献求助10
8秒前
一方通行完成签到 ,获得积分10
8秒前
8秒前
monster0101完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
Stvn完成签到,获得积分20
10秒前
核桃发布了新的文献求助10
10秒前
跳跃的太阳完成签到,获得积分10
11秒前
11秒前
enoot完成签到,获得积分10
11秒前
dalin完成签到,获得积分10
11秒前
YE发布了新的文献求助10
11秒前
buno应助外向的沅采纳,获得10
11秒前
体贴啤酒发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740