Network training parameters exploration for generating starting points of freeform reflective imaging system design based on machine learning

计算机科学 人工神经网络 功能(生物学) 人工智能 钥匙(锁) 系统设计 机器学习 计算机安全 进化生物学 生物 软件工程
作者
Wenchen Chen,Tong Yang,Dewen Cheng,Yongtian Wang
标识
DOI:10.1117/12.2573313
摘要

Using freeform optical surface in an imaging optical system is a revolution in the field of optical design. Introducing machine learning into freeform imaging optical design will significantly reduce the human effort and even beginners in optical design will be able to perform difficult design tasks. Machine learning has been successfully applied to the immediate generation of starting points with various system specifications for the design of freeform reflective imaging systems. However, the parameters used in the network training, which are the key points in the whole design framework, are determined without proper guidance, which may significantly affect the actual performance of the networks. In this paper, a comprehensive exploration of the training parameters of the neural network used for starting points generation of freeform reflective systems is conducted. The parameters include the number of layers, the number of nodes in the layers, the type of activation function, the type of loss function, the type of optimization algorithm, and the value of learning rate. A detailed comparison and analysis of different training parameters are demonstrated on the training results and the imaging performance of validation output systems with large amount of random system specifications input. Using the obtained results designers can choose proper parameters accordingly and get desired neural networks with shorter training time and better performance. The results also offer insight in the design of imaging systems with other system configurations and more advanced system specifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菲菲完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
传奇3应助灵巧南松采纳,获得10
3秒前
luojun完成签到,获得积分20
3秒前
科研通AI2S应助奋斗的剑采纳,获得10
4秒前
无花果应助庾储采纳,获得10
6秒前
上山打老虎完成签到,获得积分10
6秒前
欢喜大地完成签到,获得积分20
6秒前
8秒前
汉堡包应助高高雁枫采纳,获得10
8秒前
兴奋棒球发布了新的文献求助10
8秒前
丰息发布了新的文献求助10
8秒前
优雅的念真完成签到,获得积分10
9秒前
Wy完成签到,获得积分10
9秒前
10秒前
Lucas应助醒醒采纳,获得10
11秒前
12秒前
栗子完成签到,获得积分10
12秒前
ming发布了新的文献求助10
12秒前
CDK发布了新的文献求助10
13秒前
14秒前
14秒前
mengtingmei应助淡然乌龟采纳,获得10
14秒前
14秒前
斯文败类应助sbf采纳,获得10
14秒前
聂秋欣完成签到,获得积分20
14秒前
完美世界应助排骨炖豆角采纳,获得10
14秒前
应应完成签到,获得积分10
15秒前
15秒前
yining发布了新的文献求助10
16秒前
一二发布了新的文献求助10
16秒前
有魅力的吐司完成签到,获得积分10
17秒前
11发布了新的文献求助10
17秒前
好好读书好好完成签到 ,获得积分20
17秒前
英勇的薯片应助傲娇平蝶采纳,获得10
17秒前
Colorc发布了新的文献求助10
18秒前
flyzhang20发布了新的文献求助10
18秒前
18秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 800
Treatise on Geomorphology(2nd Edition - March 1, 2022) 520
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3070075
求助须知:如何正确求助?哪些是违规求助? 2724068
关于积分的说明 7483773
捐赠科研通 2371206
什么是DOI,文献DOI怎么找? 1257323
科研通“疑难数据库(出版商)”最低求助积分说明 609889
版权声明 596879