Network training parameters exploration for generating starting points of freeform reflective imaging system design based on machine learning

计算机科学 人工神经网络 功能(生物学) 人工智能 钥匙(锁) 系统设计 机器学习 计算机安全 进化生物学 生物 软件工程
作者
Wenchen Chen,Tong Yang,Dewen Cheng,Yongtian Wang
标识
DOI:10.1117/12.2573313
摘要

Using freeform optical surface in an imaging optical system is a revolution in the field of optical design. Introducing machine learning into freeform imaging optical design will significantly reduce the human effort and even beginners in optical design will be able to perform difficult design tasks. Machine learning has been successfully applied to the immediate generation of starting points with various system specifications for the design of freeform reflective imaging systems. However, the parameters used in the network training, which are the key points in the whole design framework, are determined without proper guidance, which may significantly affect the actual performance of the networks. In this paper, a comprehensive exploration of the training parameters of the neural network used for starting points generation of freeform reflective systems is conducted. The parameters include the number of layers, the number of nodes in the layers, the type of activation function, the type of loss function, the type of optimization algorithm, and the value of learning rate. A detailed comparison and analysis of different training parameters are demonstrated on the training results and the imaging performance of validation output systems with large amount of random system specifications input. Using the obtained results designers can choose proper parameters accordingly and get desired neural networks with shorter training time and better performance. The results also offer insight in the design of imaging systems with other system configurations and more advanced system specifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Cindy完成签到,获得积分10
1秒前
1秒前
taotao发布了新的文献求助10
4秒前
Cindy发布了新的文献求助10
5秒前
Na完成签到 ,获得积分10
6秒前
Hello应助文静的电灯胆采纳,获得10
6秒前
7秒前
忧虑的芷天完成签到,获得积分10
10秒前
xsh发布了新的文献求助10
11秒前
8R60d8应助科研通管家采纳,获得50
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得50
14秒前
852应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
15秒前
星星草完成签到,获得积分20
17秒前
19秒前
LYDC完成签到 ,获得积分10
23秒前
23秒前
N7发布了新的文献求助10
23秒前
小马甲应助清澜采纳,获得10
24秒前
konosuba完成签到,获得积分10
25秒前
25秒前
慌慌完成签到 ,获得积分10
27秒前
27秒前
27秒前
28秒前
Azur1发布了新的文献求助30
28秒前
草原狼发布了新的文献求助10
28秒前
28秒前
加减乘除发布了新的文献求助10
30秒前
zsh完成签到 ,获得积分10
31秒前
万能图书馆应助Pw采纳,获得10
31秒前
饱满芷卉发布了新的文献求助20
32秒前
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247643
求助须知:如何正确求助?哪些是违规求助? 2890926
关于积分的说明 8265341
捐赠科研通 2559198
什么是DOI,文献DOI怎么找? 1387913
科研通“疑难数据库(出版商)”最低求助积分说明 650670
邀请新用户注册赠送积分活动 627495