The role of MRI texture analysis based on susceptibility-weighted imaging in predicting Fuhrman grade of clear cell renal cell carcinoma

医学 接收机工作特性 逻辑回归 置信区间 肾透明细胞癌 肾细胞癌 分级(工程) 磁共振成像 放射科 曲线下面积 核医学 内科学 土木工程 工程类
作者
Jun Sun,Pan Liang,Tingting Zha,Wei Xing,Jie Chen,Shaofeng Duan
出处
期刊:Acta Radiologica [SAGE]
卷期号:62 (8): 1104-1111 被引量:11
标识
DOI:10.1177/0284185120951964
摘要

Background The Fuhrman nuclear grade system is one of the most important independent indicators in patients with clear cell renal cell carcinoma (ccRCC) for aggressiveness and prognosis. Preoperative assessment of tumor aggressiveness is important for surgical decision-making. Purpose To explore the role of magnetic resonance imaging (MRI) texture analysis based on susceptibility-weighted imaging (SWI) in predicting Fuhrman grade of ccRCC. Material and Methods A total of 45 patients with SWI and surgically proven ccRCC were divided into two groups: the low-grade group (Fuhrman I/II, n = 29) and the high-grade group (Fuhrman III/IV, n = 16). Texture features were extracted from SWI images. Feature selection was performed, and multivariable logistic regression analysis was performed to develop the SWI-based texture model for grading ccRCCs. Receiver operating characteristic (ROC) curve analysis and leave-group-out cross-validation (LGOCV) were performed to test the reliability of the model. Results A total of 396 SWI-based texture features were extracted from each SWI image. The SWI-based texture model developed by multivariable logistic regression analysis was: SWIscore = –0.59 + 1.60 * ZonePercentage. The area under the ROC curve of the SWI-based texture model for differentiating high-grade ccRCC from low-grade ccRCC was 0.81 (95% confidence interval 0.67–0.94), with 80% accuracy, 56.25% sensitivity, and 93.10% specificity. After 100 LGOCVs, the mean accuracy, sensitivity, and specificity were 90.91%, 91.83%, and 89.89% for the training sets, and 77.29%, 80.52%, and 71.44% for the test sets, respectively. Conclusion SWI-based texture analysis might be a reliable quantitative approach for differentiating high-grade ccRCC from low-grade ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呋喃发布了新的文献求助10
刚刚
chshj完成签到,获得积分20
刚刚
1秒前
lihua22716发布了新的文献求助30
1秒前
1秒前
2秒前
果果应助收手吧大哥采纳,获得80
2秒前
生活的狗发布了新的文献求助10
3秒前
3秒前
半岛铁盒完成签到,获得积分10
3秒前
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得30
4秒前
Ava应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
筱xiao完成签到,获得积分10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
Ferien完成签到,获得积分10
4秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
dungaway完成签到,获得积分10
4秒前
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
白开水完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Hien发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5349289
求助须知:如何正确求助?哪些是违规求助? 4483177
关于积分的说明 13954499
捐赠科研通 4382140
什么是DOI,文献DOI怎么找? 2407729
邀请新用户注册赠送积分活动 1400368
关于科研通互助平台的介绍 1373592