Electroosmosis-Driven Hydrogel Actuators Using Hydrophobic/Hydrophilic Layer-By-Layer Assembly-Induced Crack Electrodes

材料科学 图层(电子) 电极 执行机构 逐层 复合材料 纳米技术 化学工程 化学 计算机科学 工程类 物理化学 人工智能
作者
Jongkuk Ko,Dong-Jin Kim,Yongkwon Song,Seokmin Lee,Minseong Kwon,Seungyong Han,Daeshik Kang,Yongju Kim,June Huh,Je‐Sung Koh,Jinhan Cho
出处
期刊:ACS Nano [American Chemical Society]
卷期号:14 (9): 11906-11918 被引量:39
标识
DOI:10.1021/acsnano.0c04899
摘要

Development of soft actuators with higher performance and more versatile controllability has been strongly required for further innovative advancement of various soft applications. Among various soft actuators, electrochemical actuators have attracted much attention due to their lightweight, simple device configuration, and facile low-voltage control. However, the reported performances have not been satisfactory because their working mechanism depends on the limited electrode expansion by conventional electrochemical reactions. Herein, we report an electroosmosis-driven hydrogel actuator with a fully soft monolithic structure-based whole-body actuation mechanism using an amphiphilic interaction-induced layer-by-layer assembly. For this study, cracked electrodes with interconnected metal nanoparticles are prepared on hydrogels through layer-by-layer assembly and shape transformation of metal nanoparticles at hydrophobic/hydrophilic solvent interfaces. Electroosmotic pumping by cracked electrodes instantaneously induces hydrogel swelling through reversible and substantial hydraulic flow. The resultant actuator exhibits actuation strain of higher than 20% and energy density of 1.06 × 105 J m–3, allowing various geometries (e.g., curved-planar and square-pillared structures) and motions (e.g., slow-relaxation, spring-out, and two degree of freedom bending). In particular, the energy density of our actuators shows about 10-fold improvement than those of skeletal muscle, electrochemical actuators, and various stimuli-responsive hydrogel actuators reported to date.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷静映安发布了新的文献求助10
1秒前
沿海地带发布了新的文献求助10
1秒前
2秒前
丘比特应助嘉星糖采纳,获得10
2秒前
ACEmeng发布了新的文献求助10
2秒前
CipherSage应助Summer采纳,获得10
3秒前
3秒前
4秒前
5秒前
子车茗应助秋水采纳,获得30
6秒前
6秒前
7秒前
7秒前
8秒前
韩靖仇完成签到,获得积分10
8秒前
所所应助氨甲酰磷酸采纳,获得30
9秒前
嗯哼举报美丽萝莉求助涉嫌违规
9秒前
9秒前
10秒前
Maggie完成签到,获得积分20
10秒前
乐意吸氧发布了新的文献求助10
10秒前
荀语山完成签到,获得积分10
11秒前
kumo完成签到 ,获得积分10
11秒前
11秒前
NMR发布了新的文献求助30
11秒前
11秒前
坚定的雪枫应助ACEmeng采纳,获得20
12秒前
12秒前
派兀派完成签到,获得积分10
12秒前
脑洞疼应助黄招龙采纳,获得10
12秒前
13秒前
Lucas应助善良绮菱采纳,获得50
13秒前
兔斯基完成签到,获得积分10
14秒前
巧克力蛋仔完成签到 ,获得积分10
14秒前
14秒前
传奇3应助榴莲小胖采纳,获得10
14秒前
15秒前
16秒前
Owen应助程南采纳,获得10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256024
求助须知:如何正确求助?哪些是违规求助? 2898167
关于积分的说明 8300174
捐赠科研通 2567329
什么是DOI,文献DOI怎么找? 1394429
科研通“疑难数据库(出版商)”最低求助积分说明 652796
邀请新用户注册赠送积分活动 630483