🔥 科研通第二届『应助活动周』正在进行中,3月24-30日求助秒级响应🚀,千元现金等你拿。当前排名🏆 📚 中科院2025期刊分区📊 已更新
亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative Prediction of Ki-67 Status in Breast Cancer with Multiparametric MRI Using Transfer Learning

医学 磁共振成像 乳腺癌 磁共振弥散成像 乳房磁振造影 人工智能 无线电技术 深度学习 学习迁移 放射科 核医学 机器学习 癌症 计算机科学 乳腺摄影术 内科学
作者
Weixiao Liu,Yu‐Lin Cheng,Zaiyi Liu,Chunling Liu,Renee Cattell,Xinyan Xie,Yingyi Wang,Xiaojun Yang,Weitao Ye,Cuishan Liang,Jiao Li,Ying Gao,Chuan Huang,Changhong Liang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:28 (2): e44-e53 被引量:40
标识
DOI:10.1016/j.acra.2020.02.006
摘要

Rationale and Objectives Ki-67 is one of the most important biomarkers of breast cancer traditionally measured invasively via immunohistochemistry. In this study, deep learning based radiomics models were established for preoperative prediction of Ki-67 status using multiparametric magnetic resonance imaging (mp-MRI). Materials and Methods Total of 328 eligible patients were retrospectively reviewed [training dataset (n = 230) and a temporal validation dataset (n = 98)]. Deep learning imaging features were extracted from T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast enhanced T1-weighted imaging (T1+C). Transfer learning techniques constructed four feature sets based on the individual three MR sequences and their combination (i.e., mp-MRI). Multilayer perceptron classifiers were trained for final prediction of Ki-67 status. Mann-Whitney U test compared the predictive performance of individual models. Results The area under curve (AUC) of models based on T2WI,T1+C,DWI and mp-MRI were 0.727, 0.873, 0.674, and 0.888 in the training dataset, respectively, and 0.706, 0.829, 0.643, and 0.875 in the validation dataset, respectively. The predictive performance of mp-MRI classification model in the AUC value was significantly better than that of the individual sequence model (all p< 0.01). Conclusion In clinical practice, a noninvasive approach to improve the performance of radiomics in preoperative prediction of Ki-67 status can be provided by extracting breast cancer specific structural and functional features from mp-MRI images obtained from conventional scanning sequences using the advanced deep learning methods. This could further personalize medicine and computer aided diagnosis. Ki-67 is one of the most important biomarkers of breast cancer traditionally measured invasively via immunohistochemistry. In this study, deep learning based radiomics models were established for preoperative prediction of Ki-67 status using multiparametric magnetic resonance imaging (mp-MRI). Total of 328 eligible patients were retrospectively reviewed [training dataset (n = 230) and a temporal validation dataset (n = 98)]. Deep learning imaging features were extracted from T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast enhanced T1-weighted imaging (T1+C). Transfer learning techniques constructed four feature sets based on the individual three MR sequences and their combination (i.e., mp-MRI). Multilayer perceptron classifiers were trained for final prediction of Ki-67 status. Mann-Whitney U test compared the predictive performance of individual models. The area under curve (AUC) of models based on T2WI,T1+C,DWI and mp-MRI were 0.727, 0.873, 0.674, and 0.888 in the training dataset, respectively, and 0.706, 0.829, 0.643, and 0.875 in the validation dataset, respectively. The predictive performance of mp-MRI classification model in the AUC value was significantly better than that of the individual sequence model (all p< 0.01). In clinical practice, a noninvasive approach to improve the performance of radiomics in preoperative prediction of Ki-67 status can be provided by extracting breast cancer specific structural and functional features from mp-MRI images obtained from conventional scanning sequences using the advanced deep learning methods. This could further personalize medicine and computer aided diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
应助活动周(3月24-30日)排名
今日排名(3月29日)
1#22 nozero
11
110
2#16 小杨同学
8
80
3#13 kyri
2
110
4#12 levn
6
60
5#8 Nichols
4
40
6#4 cllcx
2
20
7#4 天黑不打烊
2
20
8#4 遇上就这样吧
2
20
9#4 shinysparrow
2
20
10#2 pcr163
1
10
11#2 MchemG
1
10
12#2 andrele
1
10
13#2 anagenesis
1
10
第1名:50元;第2名:30元;第3名:10元

总排名
1#7493 nozero
3000
44930
2#7090 SYLH
3535
35550
3#6147 shinysparrow
2531
36160
4#5943 科研小民工
2282
36610
5#3902 xjcy
1944
19580
6#2707 劲秉
596
21110
7#2490 小透明
986
15040
8#1891 天才小能喵
901
9900
9#1796 迟大猫
898
8980
10#1464 CAOHOU
728
7360
11#1200 S77
600
6000
12#1162 昏睡的蟠桃
296
8660
13#1072 加菲丰丰
532
5400
14#1037 从容芮
437
6000
15#978 浦肯野
403
5750
16#840 子车茗
386
4540
17#829 36456657
404
4250
18#790 枫叶
392
3980
19#654 毛豆
325
3290
20#647 tuanheqi
56
5910
21#638 果粒橙
319
3190
22#614 1+1
263
3510
23#588 cdercder
237
3510
24#564 QOP
280
2840
25#523 史小菜
241
2820
26#514 pcr163
54
4600
27#509 curtisness
249
2600
28#452 彭于彦祖
127
3250
29#432 研友_Z30GJ8
215
2170
30#394 实验好难
182
2120
31#370 Catalina_S
182
1880
32#369 我是站长才怪
181
1880
33#342 Singularity
170
1720
34#326 默默地读文献
163
1630
35#308 HEIKU
154
1540
36#294 柒月
49
2450
37#294 不懈奋进
131
1630
38#294 VDC
97
1970
39#292 lin
145
1470
40#288 火星上的菲鹰
138
1500
41#284 lyl19880908
140
1440
42#283 点着太阳的人
98
1850
43#274 一一
89
1850
44#273 sunyz
51
2220
45#272 muxiangrong
117
1550
46#270 遇上就这样吧
129
1410
47#266 cctv18
131
1350
48#259 suibianba
122
1370
49#258 从容的惋庭
129
1290
50#254 见青山
126
1280
第1名:500元;第2名:300元;第3名:100元
第4名:50元;第5名:30元;第6-10名:10元

10分钟更新一次,完整排名情况
实时播报
Orange应助Re采纳,获得10
7秒前
12秒前
青羽落霞完成签到 ,获得积分10
14秒前
shaco发布了新的文献求助30
18秒前
20秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
Johnson完成签到 ,获得积分10
40秒前
44秒前
52秒前
chenchen完成签到 ,获得积分10
54秒前
科研通AI5应助持卿采纳,获得30
55秒前
1分钟前
HS完成签到,获得积分10
1分钟前
傅诗淇发布了新的文献求助30
2分钟前
2分钟前
大漠苍鹰发布了新的文献求助10
2分钟前
shaco发布了新的文献求助10
2分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
牙瓜完成签到 ,获得积分10
2分钟前
2分钟前
caca完成签到,获得积分10
2分钟前
长情的月光完成签到,获得积分10
3分钟前
3分钟前
冰糖葫芦娃完成签到,获得积分10
3分钟前
shaco发布了新的文献求助10
3分钟前
秀丽煎蛋发布了新的文献求助10
3分钟前
小二郎应助秀丽煎蛋采纳,获得10
3分钟前
刘天宇完成签到 ,获得积分10
3分钟前
爱听歌笑寒完成签到,获得积分10
4分钟前
4分钟前
Victor完成签到 ,获得积分10
4分钟前
liusinan发布了新的文献求助10
4分钟前
科目三应助科研通管家采纳,获得10
4分钟前
从容芮应助科研通管家采纳,获得30
4分钟前
4分钟前
liusinan发布了新的文献求助10
5分钟前
科研通AI2S应助dyfsj采纳,获得10
5分钟前
在水一方应助ceeray23采纳,获得50
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 3000
Production Logging: Theoretical and Interpretive Elements 2700
On Troodon validus, an orthopodous dinosaur from the Belly River Cretaceous of Alberta, Canada 2000
Continuum Thermodynamics and Material Modelling 2000
Conference Record, IAS Annual Meeting 1977 1250
NSF/ANSI 49-2024 Biosafety Cabinetry: Design, Construction, Performance, and Field Certification 500
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3642822
求助须知:如何正确求助?哪些是违规求助? 3210433
关于积分的说明 9680575
捐赠科研通 2917498
什么是DOI,文献DOI怎么找? 1596880
邀请新用户注册赠送积分活动 751792
科研通“疑难数据库(出版商)”最低求助积分说明 731718