作者
Weixiao Liu,Yu‐Lin Cheng,Zaiyi Liu,Chunling Liu,Renee Cattell,Xinyan Xie,Yingyi Wang,Xiaojun Yang,Weitao Ye,Cuishan Liang,Jiao Li,Ying Gao,Chuan Huang,Changhong Liang
摘要
Rationale and Objectives Ki-67 is one of the most important biomarkers of breast cancer traditionally measured invasively via immunohistochemistry. In this study, deep learning based radiomics models were established for preoperative prediction of Ki-67 status using multiparametric magnetic resonance imaging (mp-MRI). Materials and Methods Total of 328 eligible patients were retrospectively reviewed [training dataset (n = 230) and a temporal validation dataset (n = 98)]. Deep learning imaging features were extracted from T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast enhanced T1-weighted imaging (T1+C). Transfer learning techniques constructed four feature sets based on the individual three MR sequences and their combination (i.e., mp-MRI). Multilayer perceptron classifiers were trained for final prediction of Ki-67 status. Mann-Whitney U test compared the predictive performance of individual models. Results The area under curve (AUC) of models based on T2WI,T1+C,DWI and mp-MRI were 0.727, 0.873, 0.674, and 0.888 in the training dataset, respectively, and 0.706, 0.829, 0.643, and 0.875 in the validation dataset, respectively. The predictive performance of mp-MRI classification model in the AUC value was significantly better than that of the individual sequence model (all p< 0.01). Conclusion In clinical practice, a noninvasive approach to improve the performance of radiomics in preoperative prediction of Ki-67 status can be provided by extracting breast cancer specific structural and functional features from mp-MRI images obtained from conventional scanning sequences using the advanced deep learning methods. This could further personalize medicine and computer aided diagnosis. Ki-67 is one of the most important biomarkers of breast cancer traditionally measured invasively via immunohistochemistry. In this study, deep learning based radiomics models were established for preoperative prediction of Ki-67 status using multiparametric magnetic resonance imaging (mp-MRI). Total of 328 eligible patients were retrospectively reviewed [training dataset (n = 230) and a temporal validation dataset (n = 98)]. Deep learning imaging features were extracted from T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast enhanced T1-weighted imaging (T1+C). Transfer learning techniques constructed four feature sets based on the individual three MR sequences and their combination (i.e., mp-MRI). Multilayer perceptron classifiers were trained for final prediction of Ki-67 status. Mann-Whitney U test compared the predictive performance of individual models. The area under curve (AUC) of models based on T2WI,T1+C,DWI and mp-MRI were 0.727, 0.873, 0.674, and 0.888 in the training dataset, respectively, and 0.706, 0.829, 0.643, and 0.875 in the validation dataset, respectively. The predictive performance of mp-MRI classification model in the AUC value was significantly better than that of the individual sequence model (all p< 0.01). In clinical practice, a noninvasive approach to improve the performance of radiomics in preoperative prediction of Ki-67 status can be provided by extracting breast cancer specific structural and functional features from mp-MRI images obtained from conventional scanning sequences using the advanced deep learning methods. This could further personalize medicine and computer aided diagnosis.