Physical and mechanical degradation behaviour of semi-crystalline PLLA for bioresorbable stent applications

结晶度 材料科学 脆性 极限抗拉强度 复合材料 弹性模量 降级(电信) 计算机科学 电信
作者
Katarzyna Polak-Kraśna,Ali Reza Abaei,Reyhaneh Neghabat Shirazi,Eoin Parle,Oliver Carroll,William Ronan,Ted J. Vaughan
出处
期刊:Journal of The Mechanical Behavior of Biomedical Materials [Elsevier BV]
卷期号:118: 104409-104409 被引量:25
标识
DOI:10.1016/j.jmbbm.2021.104409
摘要

This study presents a systematic evaluation of the physical, thermal and mechanical performance of medical-grade semi-crystalline PLLA undergoing thermally-accelerated degradation. Samples were immersed in phosphate-buffered saline solution at 50 °C for 112 days and mass loss, molecular weight, thermal properties, degree of crystallinity, FTIR and Raman spectra, tensile elastic modulus, yield stress and failure stress/strain were evaluated at consecutive time points. Samples showed a consistent reduction in molecular weight and melting temperature, a consistent increase in percent crystallinity and limited changes in glass transition temperature and mass loss. At day 49, a drastic reduction in tensile failure strain was observed, despite the fact that elastic modulus, yield and tensile strength of samples were maintained. Brittleness increase was followed by rapid increase in degradation rate. Beyond day 70, samples became too brittle to test indicating substantial deterioration of their load-bearing capacity. This study also presents a computational micromechanics framework that demonstrates that the elastic modulus of a semi-crystalline polymer undergoing degradation can be maintained, despite a reducing molecular weight through compensatory increases in percent crystallinity. This study presents novel insight into the relationship between physical properties and mechanical performance of medical-grade PLLA during degradation and could have important implications for design and development of bioresorbable stents for vascular applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
浮光关注了科研通微信公众号
3秒前
韩凌完成签到,获得积分10
4秒前
6秒前
研友_LjDyNZ发布了新的文献求助10
8秒前
酷酷元风完成签到,获得积分10
9秒前
科研通AI5应助dearrrwu采纳,获得10
9秒前
科研通AI5应助韩凌采纳,获得10
9秒前
lzd完成签到,获得积分10
10秒前
梁银环完成签到 ,获得积分10
10秒前
JamesPei应助mulidexin2021采纳,获得10
10秒前
DKW发布了新的文献求助10
11秒前
CodeCraft应助浮光采纳,获得10
12秒前
Ekko完成签到,获得积分10
13秒前
乐乐应助李苗苗采纳,获得10
13秒前
Capybara发布了新的文献求助10
13秒前
17秒前
远方完成签到,获得积分10
17秒前
小马甲应助猪猪hero采纳,获得10
19秒前
研友_Z30GJ8完成签到,获得积分0
21秒前
22秒前
不会失忆完成签到,获得积分10
22秒前
rayce发布了新的文献求助50
22秒前
23秒前
23秒前
24秒前
DT发布了新的文献求助10
25秒前
丘比特应助科研小迷糊采纳,获得10
26秒前
Lee完成签到 ,获得积分10
28秒前
思源应助复杂外套采纳,获得10
28秒前
dada发布了新的文献求助10
29秒前
29秒前
dearrrwu发布了新的文献求助10
30秒前
31秒前
英俊的铭应助霸气咖啡豆采纳,获得10
32秒前
大个应助霸气咖啡豆采纳,获得10
32秒前
冷漠的杨老板完成签到,获得积分10
32秒前
共享精神应助jiajia采纳,获得10
33秒前
猪猪hero发布了新的文献求助10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667802
求助须知:如何正确求助?哪些是违规求助? 3226272
关于积分的说明 9768903
捐赠科研通 2936222
什么是DOI,文献DOI怎么找? 1608316
邀请新用户注册赠送积分活动 759622
科研通“疑难数据库(出版商)”最低求助积分说明 735407