Physical and mechanical degradation behaviour of semi-crystalline PLLA for bioresorbable stent applications

结晶度 材料科学 脆性 极限抗拉强度 复合材料 弹性模量 降级(电信) 计算机科学 电信
作者
Katarzyna Polak-Kraśna,Ali Reza Abaei,Reyhaneh Neghabat Shirazi,Eoin Parle,Oliver Carroll,William Ronan,Ted J. Vaughan
出处
期刊:Journal of The Mechanical Behavior of Biomedical Materials [Elsevier]
卷期号:118: 104409-104409 被引量:25
标识
DOI:10.1016/j.jmbbm.2021.104409
摘要

This study presents a systematic evaluation of the physical, thermal and mechanical performance of medical-grade semi-crystalline PLLA undergoing thermally-accelerated degradation. Samples were immersed in phosphate-buffered saline solution at 50 °C for 112 days and mass loss, molecular weight, thermal properties, degree of crystallinity, FTIR and Raman spectra, tensile elastic modulus, yield stress and failure stress/strain were evaluated at consecutive time points. Samples showed a consistent reduction in molecular weight and melting temperature, a consistent increase in percent crystallinity and limited changes in glass transition temperature and mass loss. At day 49, a drastic reduction in tensile failure strain was observed, despite the fact that elastic modulus, yield and tensile strength of samples were maintained. Brittleness increase was followed by rapid increase in degradation rate. Beyond day 70, samples became too brittle to test indicating substantial deterioration of their load-bearing capacity. This study also presents a computational micromechanics framework that demonstrates that the elastic modulus of a semi-crystalline polymer undergoing degradation can be maintained, despite a reducing molecular weight through compensatory increases in percent crystallinity. This study presents novel insight into the relationship between physical properties and mechanical performance of medical-grade PLLA during degradation and could have important implications for design and development of bioresorbable stents for vascular applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呱呱完成签到,获得积分10
刚刚
刚刚
123完成签到 ,获得积分10
刚刚
打不死的小强完成签到 ,获得积分10
1秒前
1秒前
run发布了新的文献求助10
2秒前
龙成阳完成签到 ,获得积分10
2秒前
3秒前
香蕉觅云应助hp571采纳,获得10
3秒前
呱呱发布了新的文献求助10
4秒前
自由迎曼发布了新的文献求助30
4秒前
科研王发布了新的文献求助10
4秒前
UP发布了新的文献求助10
4秒前
阿俊发布了新的文献求助10
4秒前
123发布了新的文献求助10
5秒前
细心尔岚发布了新的文献求助10
5秒前
asdfzxcv应助潇洒的月光采纳,获得10
5秒前
6秒前
6秒前
猫会后空翻完成签到 ,获得积分10
7秒前
六尺巷发布了新的文献求助10
8秒前
10秒前
细腻的仙人掌给yar的求助进行了留言
11秒前
乐乐应助游子轩采纳,获得10
11秒前
机智的誉发布了新的文献求助10
11秒前
研友_VZG7GZ应助long采纳,获得10
12秒前
kingnb完成签到,获得积分10
12秒前
12秒前
UP完成签到,获得积分10
12秒前
hp571完成签到,获得积分10
13秒前
眼睛大花生完成签到,获得积分10
14秒前
在水一方应助细心尔岚采纳,获得10
14秒前
小琥同学发布了新的文献求助10
14秒前
14秒前
李健的粉丝团团长应助2327采纳,获得10
14秒前
run完成签到,获得积分20
14秒前
15秒前
15秒前
科研小白完成签到,获得积分10
16秒前
hp571发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637144
求助须知:如何正确求助?哪些是违规求助? 4742794
关于积分的说明 14998033
捐赠科研通 4795378
什么是DOI,文献DOI怎么找? 2561930
邀请新用户注册赠送积分活动 1521455
关于科研通互助平台的介绍 1481513