Automated Identification of Chemical Series: Classifying like a Medicinal Chemist

聚类分析 计算机科学 系列(地层学) 数据挖掘 人工智能 标杆管理 稳健性(进化) 机器学习 化学空间 相似性(几何) 鉴定(生物学) 药物发现 生物信息学 古生物学 生物化学 化学 营销 基因 业务 图像(数学) 生物 植物
作者
Franziska Kruger,Nikolas Fechner,Nikolaus Stiefl
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (6): 2888-2902 被引量:11
标识
DOI:10.1021/acs.jcim.0c00204
摘要

We investigate different automated approaches for the classification of chemical series in early drug discovery, with the aim of closely mimicking human chemical series conception. Chemical series, which are commonly defined by hand-drawn scaffolds, organize datasets in drug discovery projects. Often, they form the basis for further project decisions. To trace and evaluate these decisions in historic and ongoing projects, it is important to know or reconstruct chemical series. There is not a unique correct definition of chemical series, and the human definition certainly involves a subjective bias. Hence, we first develop quality metrics for the chemical series definitions, evaluating the size and specificity of chemical series. These metrics are applied to categorize human series definitions and implemented in automated classification approaches. For the automated classification of chemical series, we test different fragmentation and similarity-based clustering algorithms and apply different approaches to infer series definitions from these clusters or sets of fragments. We benchmark the classification results against human-defined series from 30 internal projects. The best results in reproducing the composition of human-defined series are achieved when applying UPGMA (unweighted pair group method with arithmetic mean) clustering to the project dataset and calculating maximum common substructures of the clusters as series definitions. We evaluate this approach in more detail on a public dataset and assess its robustness by 10-fold cross-validation, each time sampling 40% of the dataset. Through these benchmarking and validation experiments, we show that the proposed automated approach is able to accurately and robustly identify human-defined series, which comply with a certain, predefined level of specificity and size. Suggesting a thoroughly tested algorithm for series classification, as well as quality metrics for series and several benchmarking approaches, this work lays the foundation for further analysis of project decisions, and it offers an enhanced understanding of the properties of human-defined chemical series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗若风完成签到,获得积分10
1秒前
2秒前
3秒前
斯文败类应助slin_sjtu采纳,获得10
4秒前
4秒前
丝丝发布了新的社区帖子
6秒前
墨墨叻发布了新的文献求助30
6秒前
钟D摆完成签到 ,获得积分10
6秒前
7秒前
jt发布了新的文献求助20
7秒前
8秒前
xyb完成签到,获得积分20
9秒前
完美世界应助J_C_Van采纳,获得10
9秒前
科研通AI2S应助KeYang采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
ganggang发布了新的文献求助10
12秒前
0p9ol8ik完成签到,获得积分10
12秒前
科目三应助yy采纳,获得10
13秒前
14秒前
小白发布了新的文献求助10
14秒前
15秒前
华仔应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
16秒前
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
yx_cheng应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
16秒前
17秒前
17秒前
晗月完成签到,获得积分10
18秒前
伶俐雨泽完成签到,获得积分10
19秒前
20秒前
20秒前
SYLH应助陈皮糖不酸采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952627
求助须知:如何正确求助?哪些是违规求助? 3498061
关于积分的说明 11090192
捐赠科研通 3228661
什么是DOI,文献DOI怎么找? 1785008
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801344