Automated Identification of Chemical Series: Classifying like a Medicinal Chemist

聚类分析 计算机科学 系列(地层学) 数据挖掘 人工智能 标杆管理 稳健性(进化) 机器学习 化学空间 相似性(几何) 鉴定(生物学) 药物发现 生物信息学 基因 古生物学 营销 化学 业务 图像(数学) 生物 植物 生物化学
作者
Franziska Kruger,Nikolas Fechner,Nikolaus Stiefl
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (6): 2888-2902 被引量:11
标识
DOI:10.1021/acs.jcim.0c00204
摘要

We investigate different automated approaches for the classification of chemical series in early drug discovery, with the aim of closely mimicking human chemical series conception. Chemical series, which are commonly defined by hand-drawn scaffolds, organize datasets in drug discovery projects. Often, they form the basis for further project decisions. To trace and evaluate these decisions in historic and ongoing projects, it is important to know or reconstruct chemical series. There is not a unique correct definition of chemical series, and the human definition certainly involves a subjective bias. Hence, we first develop quality metrics for the chemical series definitions, evaluating the size and specificity of chemical series. These metrics are applied to categorize human series definitions and implemented in automated classification approaches. For the automated classification of chemical series, we test different fragmentation and similarity-based clustering algorithms and apply different approaches to infer series definitions from these clusters or sets of fragments. We benchmark the classification results against human-defined series from 30 internal projects. The best results in reproducing the composition of human-defined series are achieved when applying UPGMA (unweighted pair group method with arithmetic mean) clustering to the project dataset and calculating maximum common substructures of the clusters as series definitions. We evaluate this approach in more detail on a public dataset and assess its robustness by 10-fold cross-validation, each time sampling 40% of the dataset. Through these benchmarking and validation experiments, we show that the proposed automated approach is able to accurately and robustly identify human-defined series, which comply with a certain, predefined level of specificity and size. Suggesting a thoroughly tested algorithm for series classification, as well as quality metrics for series and several benchmarking approaches, this work lays the foundation for further analysis of project decisions, and it offers an enhanced understanding of the properties of human-defined chemical series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研人完成签到,获得积分10
刚刚
kilig发布了新的文献求助10
刚刚
fd163c发布了新的文献求助30
2秒前
2秒前
2秒前
ty完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
坚定背包完成签到,获得积分10
4秒前
TsutsumiRyuu发布了新的文献求助10
5秒前
5秒前
Soxiar完成签到 ,获得积分10
5秒前
5秒前
KimTran应助大强采纳,获得10
6秒前
sfas完成签到,获得积分10
6秒前
拼搏的月亮完成签到,获得积分10
6秒前
乐乐发布了新的文献求助10
6秒前
tian发布了新的文献求助10
6秒前
7秒前
8秒前
wh发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
哥哥喜欢格格完成签到 ,获得积分10
12秒前
可爱的函函应助asfiretime采纳,获得10
12秒前
13秒前
13秒前
13秒前
北川发布了新的文献求助10
14秒前
14秒前
Anonyme发布了新的文献求助10
14秒前
14秒前
晴天发布了新的文献求助10
15秒前
含糊的紫翠完成签到,获得积分10
15秒前
16秒前
17秒前
青田101完成签到,获得积分10
18秒前
李爱国应助机灵的成协采纳,获得10
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919