材料科学
电磁屏蔽
复合材料
MXenes公司
图层(电子)
聚酯纤维
氢氟酸
多孔性
冶金
纳米技术
作者
Zhe Liu,Sijia He,Haoyu Wang,Xiuchen Wang
标识
DOI:10.1177/00405175211062352
摘要
Blended electromagnetic shielding (EMS) fabrics of cotton/stainless steel/polyester have been widely applied. The porous structure of the fabric is the guarantee of its good comfort performance, but it also hinders the improvement of shielding efficiency and the endowing of wave absorption performance. To solve the above problems, this paper proposes a mixed resistance field based on fabric pores by the construction of multi-layer MXenes. Ti 3 AlC 2 is etched by hydrochloric acid and lithium fluoride to generate hydrofluoric acid in situ to prepare multi-layer Ti 3 C 2 T x . The finishing experiments are designed to finish the fabric around the pores with Ti 3 C 2 T x impregnation. The enhancement effect and mechanism of the mixed resistance field on the shielding effectiveness and wave absorbing properties of the fabric are analyzed. The result shows that the multi-layer Ti 3 C 2 T x for textile finishing is prepared quickly and effectively using the proposed method. The micro media of the Ti 3 C 2 T x in the dispersion are adsorbed on the surface of various fibers, most of which are cotton fibers. The shielding effectiveness of the finished EMS fabric is improved significantly in the frequency ranges of 6.57–14 GHz and 11.97–18 GHz. The wave absorbing performances in the frequency range of 11.97–18 GHz are excellent. It is proved that the effect of the mixed resistance field of the pores was satisfactory. This paper provides a new way for the application of Ti 3 C 2 T x in EMS fabric, solves the disadvantages caused by pores, and can provide a reference for the design and production of wave absorbing EMS fabric.
科研通智能强力驱动
Strongly Powered by AbleSci AI