Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting

卷积神经网络 计算机科学 人工神经网络 太阳辐照度 深度学习 人工智能 辐照度 期限(时间) 气象学 地理 量子力学 物理
作者
Pratima Kumari,Durga Toshniwal
出处
期刊:Applied Energy [Elsevier]
卷期号:295: 117061-117061 被引量:168
标识
DOI:10.1016/j.apenergy.2021.117061
摘要

The volatile behavior of solar energy is the biggest challenge in its successful integration with existing grid systems. Accurate global horizontal irradiance (GHI) forecasting can resolve this issue and lead to early and effective participation in the energy market. This study proposes a new hybrid deep learning model, namely long short term memory–convolutional neural network (LSTM–CNN), for hourly GHI forecasting, which models the spatio-temporal features by integrating the long short term memory (LSTM) and convolutional neural network (CNN) model. The proposed model is trained with the meteorological data of 23 locations of California State, USA, which includes temperature, precipitation, relative humidity, cloud cover, etc., as input parameters. The proposed hybrid LSTM–CNN model firstly uses LSTM to extract the temporal features from time-series solar irradiance data, followed by CNN, which extracts the spatial features from the correlation matrix of several meteorological variables of target and its neighbor location. The prediction accuracy of the developed model is analyzed rigorously by examining the performance for a year, for four seasons and under three sky conditions. Besides, the proposed LSTM–CNN model shows a forecast skill score in a range of about 37%–45% over few standalone models, including smart persistence, support vector machine, artificial neural network, LSTM, CNN and other hybrid models. The findings of the present work suggest that the proposed hybrid LSTM–CNN model is a reliable alternative for short-term GHI prediction due to its high predictive accuracy under diverse climatic, seasonal and sky conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博弈-研赞比亚完成签到,获得积分10
刚刚
川川完成签到,获得积分10
1秒前
丁一帆完成签到,获得积分10
2秒前
活泼人生发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
xc1234发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
yifan92完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助费费仙女采纳,获得10
6秒前
najibveto应助shmmxy采纳,获得10
7秒前
KK发布了新的文献求助10
7秒前
大个应助明亮依琴采纳,获得10
8秒前
波特卡斯D艾斯完成签到 ,获得积分10
8秒前
永远完成签到,获得积分10
8秒前
Jasper应助熊11采纳,获得10
9秒前
10秒前
医平青云发布了新的文献求助10
10秒前
Huareyou完成签到,获得积分10
10秒前
11秒前
梦在彼岸完成签到,获得积分10
11秒前
胖头鱼发布了新的文献求助10
11秒前
wxy发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
14秒前
KK完成签到,获得积分10
14秒前
16秒前
16秒前
17秒前
17秒前
17秒前
余治霆完成签到,获得积分10
17秒前
研友_VZG7GZ应助白华苍松采纳,获得10
17秒前
孙慧莹完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154241
求助须知:如何正确求助?哪些是违规求助? 2805095
关于积分的说明 7863477
捐赠科研通 2463276
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629486
版权声明 601821