Peakon公司
数学
不稳定性
特征向量
操作员(生物学)
Camassa–Holm方程
复平面
可积系统
光谱(功能分析)
数学分析
平方可积函数
平面(几何)
数学物理
松驰对
组合数学
纯数学
物理
几何学
量子力学
抑制因子
基因
化学
转录因子
生物化学
作者
Stéphane Lafortune,Dmitry E. Pelinovsky
出处
期刊:Siam Journal on Mathematical Analysis
[Society for Industrial and Applied Mathematics]
日期:2022-08-01
卷期号:54 (4): 4572-4590
被引量:6
摘要
We prove spectral instability of peakons in the $b$-family of Camassa--Holm equations that includes the integrable cases of $b = 2$ and $b = 3$. We start with a linearized operator defined on functions in $H^1(\mathbb{R}) \cap W^{1,\infty}(\mathbb{R})$ and extend it to a linearized operator defined on weaker functions in $L^2(\mathbb{R})$. For $b \neq \frac{5}{2}$, the spectrum of the linearized operator in $L^2(\mathbb{R})$ is proved to cover a closed vertical strip of the complex plane. For $b = \frac{5}{2}$, the strip shrinks to the imaginary axis, but an additional pair of real eigenvalues exists due to projections to the peakon and its spatial translation. The spectral instability results agree with the linear instability results in the case of the Camassa--Holm equation for $b = 2$.
科研通智能强力驱动
Strongly Powered by AbleSci AI