Lyapunov-Guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

Lyapunov优化 计算机科学 移动边缘计算 计算卸载 帧(网络) 在线算法 强化学习 数学优化 边缘计算 最优化问题 随机优化 李雅普诺夫函数 无线网络 随机规划 计算 GSM演进的增强数据速率 无线 算法 人工智能 计算机网络 李雅普诺夫方程 李雅普诺夫指数 数学 混乱的 非线性系统 电信 物理 量子力学
作者
Suzhi Bi,Liang Huang,Hui Wang,Ying Jun Zhang
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (11): 7519-7537 被引量:94
标识
DOI:10.1109/twc.2021.3085319
摘要

Opportunistic computation offloading is an effective method to improve the computation performance of mobile-edge computing (MEC) networks under dynamic edge environment. In this paper, we consider a multi-user MEC network with time-varying wireless channels and stochastic user task data arrivals in sequential time frames. In particular, we aim to design an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability and average power constraints. The online algorithm is practical in the sense that the decisions for each time frame are made without the assumption of knowing the future realizations of random channel conditions and data arrivals. We formulate the problem as a multi-stage stochastic mixed integer non-linear programming (MINLP) problem that jointly determines the binary offloading (each user computes the task either locally or at the edge server) and system resource allocation decisions in sequential time frames. To address the coupling in the decisions of different time frames, we propose a novel framework, named LyDROO, that combines the advantages of Lyapunov optimization and deep reinforcement learning (DRL). Specifically, LyDROO first applies Lyapunov optimization to decouple the multi-stage stochastic MINLP into deterministic per-frame MINLP subproblems. By doing so, it guarantees to satisfy all the long-term constraints by solving the per-frame subproblems that are much smaller in size. Then, LyDROO integrates model-based optimization and model-free DRL to solve the per-frame MINLP problems with very low computational complexity. Simulation results show that under various network setups, the proposed LyDROO achieves optimal computation performance while stabilizing all queues in the system. Besides, it induces very low computation time that is particularly suitable for real-time implementation in fast fading environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助水水采纳,获得10
刚刚
123应助走四方采纳,获得20
1秒前
传奇3应助赫若魔采纳,获得10
1秒前
1秒前
浮笙完成签到,获得积分10
2秒前
tlinna关注了科研通微信公众号
2秒前
mimi发布了新的文献求助30
2秒前
3秒前
爆米花应助XU采纳,获得10
3秒前
4秒前
长情凝丹发布了新的文献求助10
4秒前
4秒前
MZT发布了新的文献求助30
5秒前
MlUhTkE发布了新的文献求助10
5秒前
木木完成签到,获得积分20
6秒前
6秒前
风思雅发布了新的文献求助10
6秒前
材料人完成签到,获得积分10
6秒前
7秒前
7秒前
思源应助yfzhang采纳,获得10
7秒前
清脆香萱完成签到,获得积分10
7秒前
lili完成签到,获得积分10
7秒前
LeeY.完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
攒星星完成签到,获得积分10
9秒前
9秒前
bkagyin应助caozhi采纳,获得10
9秒前
Likej完成签到,获得积分10
9秒前
万能图书馆应助热心初阳采纳,获得10
10秒前
此之未完成签到 ,获得积分10
10秒前
Hannah17发布了新的文献求助10
11秒前
曲终人散完成签到,获得积分10
11秒前
勿忘发布了新的文献求助10
11秒前
chenjun7080完成签到,获得积分10
12秒前
12秒前
学萌发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309253
求助须知:如何正确求助?哪些是违规求助? 2942586
关于积分的说明 8509788
捐赠科研通 2617736
什么是DOI,文献DOI怎么找? 1430320
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649274