Lyapunov-Guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

Lyapunov优化 计算机科学 移动边缘计算 计算卸载 帧(网络) 在线算法 强化学习 数学优化 边缘计算 最优化问题 随机优化 李雅普诺夫函数 无线网络 随机规划 GSM演进的增强数据速率 无线 算法 人工智能 计算机网络 李雅普诺夫方程 李雅普诺夫指数 数学 非线性系统 混乱的 电信 物理 量子力学
作者
Suzhi Bi,Liang Huang,Hui Wang,Ying–Jun Angela Zhang
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (11): 7519-7537 被引量:209
标识
DOI:10.1109/twc.2021.3085319
摘要

Opportunistic computation offloading is an effective method to improve the computation performance of mobile-edge computing (MEC) networks under dynamic edge environment. In this paper, we consider a multi-user MEC network with time-varying wireless channels and stochastic user task data arrivals in sequential time frames. In particular, we aim to design an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability and average power constraints. The online algorithm is practical in the sense that the decisions for each time frame are made without the assumption of knowing the future realizations of random channel conditions and data arrivals. We formulate the problem as a multi-stage stochastic mixed integer non-linear programming (MINLP) problem that jointly determines the binary offloading (each user computes the task either locally or at the edge server) and system resource allocation decisions in sequential time frames. To address the coupling in the decisions of different time frames, we propose a novel framework, named LyDROO, that combines the advantages of Lyapunov optimization and deep reinforcement learning (DRL). Specifically, LyDROO first applies Lyapunov optimization to decouple the multi-stage stochastic MINLP into deterministic per-frame MINLP subproblems. By doing so, it guarantees to satisfy all the long-term constraints by solving the per-frame subproblems that are much smaller in size. Then, LyDROO integrates model-based optimization and model-free DRL to solve the per-frame MINLP problems with very low computational complexity. Simulation results show that under various network setups, the proposed LyDROO achieves optimal computation performance while stabilizing all queues in the system. Besides, it induces very low computation time that is particularly suitable for real-time implementation in fast fading environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡发布了新的文献求助10
刚刚
李晓龙完成签到,获得积分10
1秒前
海棠依旧发布了新的文献求助200
2秒前
2秒前
3秒前
kryptonite发布了新的文献求助10
3秒前
玛卡巴卡发布了新的文献求助10
3秒前
怕黑明雪完成签到,获得积分10
4秒前
卡卡完成签到,获得积分10
6秒前
那兰完成签到,获得积分20
6秒前
唠叨的月光完成签到,获得积分10
8秒前
於菟发布了新的文献求助10
9秒前
止水完成签到,获得积分10
9秒前
NexusExplorer应助芬达采纳,获得10
9秒前
JamesPei应助肉肉采纳,获得10
9秒前
10秒前
11秒前
12秒前
情怀应助zhaxiao采纳,获得10
13秒前
Azhou应助zhaxiao采纳,获得30
13秒前
量子星尘发布了新的文献求助10
14秒前
搜集达人应助既温柔采纳,获得10
14秒前
15秒前
我是老大应助秀丽的板栗采纳,获得10
16秒前
wgr发布了新的文献求助10
17秒前
科研通AI5应助跳跃的访琴采纳,获得10
18秒前
无情的匪发布了新的文献求助10
18秒前
18秒前
寜1完成签到,获得积分10
19秒前
20秒前
Owen应助SzyAzns采纳,获得10
21秒前
英俊的铭应助故意的乐菱采纳,获得10
22秒前
上官若男应助自信小笼包采纳,获得10
22秒前
星辰大海应助lelele采纳,获得10
23秒前
NexusExplorer应助baibai采纳,获得10
24秒前
YJc关闭了YJc文献求助
27秒前
28秒前
大个应助wgr采纳,获得10
28秒前
29秒前
852应助开放的明杰采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975953
求助须知:如何正确求助?哪些是违规求助? 3520269
关于积分的说明 11201866
捐赠科研通 3256738
什么是DOI,文献DOI怎么找? 1798436
邀请新用户注册赠送积分活动 877578
科研通“疑难数据库(出版商)”最低求助积分说明 806464