Personalized Dynamic Pricing with Machine Learning: High-Dimensional Features and Heterogeneous Elasticity

后悔 动态定价 收入 收益管理 订单(交换) 计算机科学 产品(数学) 微观经济学 贷款 经济 计量经济学 机器学习 数学 财务 几何学
作者
Gah‐Yi Ban,N. Bora Keskin
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (9): 5549-5568 被引量:157
标识
DOI:10.1287/mnsc.2020.3680
摘要

We consider a seller who can dynamically adjust the price of a product at the individual customer level, by utilizing information about customers’ characteristics encoded as a d-dimensional feature vector. We assume a personalized demand model, parameters of which depend on s out of the d features. The seller initially does not know the relationship between the customer features and the product demand but learns this through sales observations over a selling horizon of T periods. We prove that the seller’s expected regret, that is, the revenue loss against a clairvoyant who knows the underlying demand relationship, is at least of order [Formula: see text] under any admissible policy. We then design a near-optimal pricing policy for a semiclairvoyant seller (who knows which s of the d features are in the demand model) who achieves an expected regret of order [Formula: see text]. We extend this policy to a more realistic setting, where the seller does not know the true demand predictors, and show that this policy has an expected regret of order [Formula: see text], which is also near-optimal. Finally, we test our theory on simulated data and on a data set from an online auto loan company in the United States. On both data sets, our experimentation-based pricing policy is superior to intuitive and/or widely-practiced customized pricing methods, such as myopic pricing and segment-then-optimize policies. Furthermore, our policy improves upon the loan company’s historical pricing decisions by 47% in expected revenue over a six-month period. This paper was accepted by Noah Gans, stochastic models and simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luluyang发布了新的文献求助20
1秒前
1秒前
蕲艾比比谁完成签到,获得积分10
1秒前
负责红酒完成签到,获得积分10
2秒前
2秒前
daytoy完成签到,获得积分10
2秒前
3秒前
伞下铭发布了新的文献求助10
3秒前
3秒前
材料小白完成签到,获得积分10
4秒前
jwb711发布了新的文献求助30
4秒前
JayceHe应助小雨采纳,获得10
4秒前
5秒前
zhj发布了新的文献求助10
6秒前
现代的绿真完成签到,获得积分10
6秒前
6秒前
lgao驳回了Orange应助
7秒前
有魅力的含海完成签到,获得积分10
7秒前
7秒前
Li完成签到,获得积分10
7秒前
Jasper应助daytoy采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
负责红酒发布了新的文献求助10
9秒前
Yu发布了新的文献求助10
9秒前
辛勤寻琴完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
小马甲应助热心的易烟采纳,获得10
11秒前
12秒前
12秒前
12秒前
zhj完成签到,获得积分10
13秒前
希望天下0贩的0应助liekkas采纳,获得10
13秒前
Akim应助mengdewen采纳,获得30
13秒前
清浅发布了新的文献求助10
13秒前
13秒前
13秒前
某某完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006