Personalized Dynamic Pricing with Machine Learning: High-Dimensional Features and Heterogeneous Elasticity

后悔 动态定价 收入 收益管理 订单(交换) 计算机科学 产品(数学) 微观经济学 贷款 经济 计量经济学 机器学习 数学 财务 几何学
作者
Gah‐Yi Ban,N. Bora Keskin
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (9): 5549-5568 被引量:144
标识
DOI:10.1287/mnsc.2020.3680
摘要

We consider a seller who can dynamically adjust the price of a product at the individual customer level, by utilizing information about customers’ characteristics encoded as a d-dimensional feature vector. We assume a personalized demand model, parameters of which depend on s out of the d features. The seller initially does not know the relationship between the customer features and the product demand but learns this through sales observations over a selling horizon of T periods. We prove that the seller’s expected regret, that is, the revenue loss against a clairvoyant who knows the underlying demand relationship, is at least of order [Formula: see text] under any admissible policy. We then design a near-optimal pricing policy for a semiclairvoyant seller (who knows which s of the d features are in the demand model) who achieves an expected regret of order [Formula: see text]. We extend this policy to a more realistic setting, where the seller does not know the true demand predictors, and show that this policy has an expected regret of order [Formula: see text], which is also near-optimal. Finally, we test our theory on simulated data and on a data set from an online auto loan company in the United States. On both data sets, our experimentation-based pricing policy is superior to intuitive and/or widely-practiced customized pricing methods, such as myopic pricing and segment-then-optimize policies. Furthermore, our policy improves upon the loan company’s historical pricing decisions by 47% in expected revenue over a six-month period. This paper was accepted by Noah Gans, stochastic models and simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亓雅丽发布了新的文献求助10
刚刚
无辜秋珊发布了新的文献求助10
刚刚
温暖雨灵发布了新的文献求助30
1秒前
HUAJIAO完成签到,获得积分10
2秒前
gabee完成签到 ,获得积分10
2秒前
3秒前
研友_VZG7GZ应助小天狼星采纳,获得10
6秒前
6秒前
活力的驳发布了新的文献求助10
8秒前
8秒前
大个应助yiyi采纳,获得30
8秒前
温暖雨灵完成签到,获得积分20
8秒前
杨自强发布了新的文献求助10
9秒前
9秒前
机智觅儿发布了新的文献求助10
9秒前
快乐小王完成签到,获得积分10
10秒前
11秒前
11秒前
隐形曼青应助OKOK采纳,获得10
11秒前
zzz发布了新的文献求助10
13秒前
13秒前
江洋大盗发布了新的文献求助10
17秒前
852应助活力的驳采纳,获得10
17秒前
18秒前
hping发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
爆米花应助沉默是金12采纳,获得10
21秒前
21秒前
21秒前
zrw发布了新的文献求助10
22秒前
zsy完成签到,获得积分10
23秒前
哈哈哈发布了新的文献求助10
24秒前
小橙完成签到 ,获得积分10
24秒前
思维隋发布了新的文献求助10
25秒前
czh应助斑鸠采纳,获得10
25秒前
30秒前
冷傲书雪完成签到 ,获得积分10
30秒前
所所应助斑鸠采纳,获得10
32秒前
一抹冷色调完成签到,获得积分10
32秒前
研友_VZG7GZ应助彭哒哒采纳,获得10
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167