Personalized Dynamic Pricing with Machine Learning: High-Dimensional Features and Heterogeneous Elasticity

后悔 动态定价 收入 收益管理 订单(交换) 计算机科学 产品(数学) 微观经济学 贷款 经济 计量经济学 机器学习 数学 财务 几何学
作者
Gah‐Yi Ban,N. Bora Keskin
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (9): 5549-5568 被引量:136
标识
DOI:10.1287/mnsc.2020.3680
摘要

We consider a seller who can dynamically adjust the price of a product at the individual customer level, by utilizing information about customers’ characteristics encoded as a d-dimensional feature vector. We assume a personalized demand model, parameters of which depend on s out of the d features. The seller initially does not know the relationship between the customer features and the product demand but learns this through sales observations over a selling horizon of T periods. We prove that the seller’s expected regret, that is, the revenue loss against a clairvoyant who knows the underlying demand relationship, is at least of order [Formula: see text] under any admissible policy. We then design a near-optimal pricing policy for a semiclairvoyant seller (who knows which s of the d features are in the demand model) who achieves an expected regret of order [Formula: see text]. We extend this policy to a more realistic setting, where the seller does not know the true demand predictors, and show that this policy has an expected regret of order [Formula: see text], which is also near-optimal. Finally, we test our theory on simulated data and on a data set from an online auto loan company in the United States. On both data sets, our experimentation-based pricing policy is superior to intuitive and/or widely-practiced customized pricing methods, such as myopic pricing and segment-then-optimize policies. Furthermore, our policy improves upon the loan company’s historical pricing decisions by 47% in expected revenue over a six-month period. This paper was accepted by Noah Gans, stochastic models and simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
章鱼完成签到,获得积分10
1秒前
万能图书馆应助Lan采纳,获得10
2秒前
2秒前
湘澜发布了新的文献求助10
2秒前
打打应助xiaobai采纳,获得10
4秒前
yuyuyu完成签到,获得积分10
4秒前
5秒前
5秒前
abb完成签到,获得积分10
7秒前
李健应助小孟采纳,获得10
7秒前
7秒前
米卡完成签到,获得积分20
8秒前
9秒前
10秒前
10秒前
风旅发布了新的文献求助10
11秒前
12秒前
soso发布了新的文献求助10
12秒前
wanci应助fabian采纳,获得10
12秒前
hexy629完成签到,获得积分10
13秒前
今后应助安输采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
iNk应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得20
14秒前
思源应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
大番茄应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
HaomingZhang应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538670
求助须知:如何正确求助?哪些是违规求助? 3116388
关于积分的说明 9325077
捐赠科研通 2814221
什么是DOI,文献DOI怎么找? 1546519
邀请新用户注册赠送积分活动 720607
科研通“疑难数据库(出版商)”最低求助积分说明 712086