Personalized Dynamic Pricing with Machine Learning: High-Dimensional Features and Heterogeneous Elasticity

后悔 动态定价 收入 收益管理 订单(交换) 计算机科学 产品(数学) 微观经济学 贷款 经济 计量经济学 机器学习 数学 财务 几何学
作者
Gah‐Yi Ban,N. Bora Keskin
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (9): 5549-5568 被引量:157
标识
DOI:10.1287/mnsc.2020.3680
摘要

We consider a seller who can dynamically adjust the price of a product at the individual customer level, by utilizing information about customers’ characteristics encoded as a d-dimensional feature vector. We assume a personalized demand model, parameters of which depend on s out of the d features. The seller initially does not know the relationship between the customer features and the product demand but learns this through sales observations over a selling horizon of T periods. We prove that the seller’s expected regret, that is, the revenue loss against a clairvoyant who knows the underlying demand relationship, is at least of order [Formula: see text] under any admissible policy. We then design a near-optimal pricing policy for a semiclairvoyant seller (who knows which s of the d features are in the demand model) who achieves an expected regret of order [Formula: see text]. We extend this policy to a more realistic setting, where the seller does not know the true demand predictors, and show that this policy has an expected regret of order [Formula: see text], which is also near-optimal. Finally, we test our theory on simulated data and on a data set from an online auto loan company in the United States. On both data sets, our experimentation-based pricing policy is superior to intuitive and/or widely-practiced customized pricing methods, such as myopic pricing and segment-then-optimize policies. Furthermore, our policy improves upon the loan company’s historical pricing decisions by 47% in expected revenue over a six-month period. This paper was accepted by Noah Gans, stochastic models and simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haha发布了新的文献求助10
1秒前
追寻无施完成签到,获得积分10
3秒前
大模型应助着急的棉花糖采纳,获得10
3秒前
123yyaa发布了新的文献求助10
3秒前
4秒前
huang完成签到,获得积分10
4秒前
4秒前
6秒前
糖果不甜完成签到,获得积分10
6秒前
无花果应助婷婷采纳,获得10
7秒前
8秒前
Akim应助刘佳慧采纳,获得10
10秒前
10秒前
尹天奇发布了新的文献求助10
10秒前
10秒前
田様应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
ccm应助科研通管家采纳,获得20
13秒前
Owen应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
huang发布了新的文献求助10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得20
13秒前
烟花应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
终梦应助科研通管家采纳,获得30
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
ccm应助科研通管家采纳,获得10
14秒前
xxfsx应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
完美又槐应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818