Collaborative Network for Super-Resolution and Semantic Segmentation of Remote Sensing Images

计算机科学 分割 人工智能 图像分辨率 计算机视觉 图像分割 分辨率(逻辑) 块(置换群论) 交叉口(航空) 模式识别(心理学) 几何学 数学 工程类 航空航天工程
作者
Qian Zhang,Guang Yang,Guixu Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:31
标识
DOI:10.1109/tgrs.2021.3099300
摘要

In the past few years, multitask learning (MTL) has been widely used in a single model to solve the problems of multiple businesses. MTL enables each task to achieve high performance and greatly reduces computational resource overhead. In this work, we designed a collaborative network that simultaneously solves the super-resolution semantic segmentation and super-resolution image reconstruction. This algorithm can obtain high-resolution semantic segmentation and super-resolution reconstruction results by taking relatively low-resolution images as input when high-resolution data are inconvenient or computing resources are limited. The framework consists of three parts: the semantic segmentation branch (SSB), the super-resolution branch (SRB), and the structural affinity block (SAB). Specifically, the SSB, SRB, and SAB are responsible for completing super-resolution semantic segmentation, image super-resolution reconstruction, and associated features, respectively. Our proposed method is simple and efficient, and it can replace the different branches with most of the state-of-the-art models. The International Society for Photogrammetry and Remote Sensing (ISPRS) segmentation benchmarks were used to evaluate our models. In particular, super-resolution semantic segmentation on the Potsdam dataset reduced Intersection over Union (IoU) by only 1.8% when the resolution of the input image was reduced by a factor of two. The experimental results showed that our framework can obtain more accurate semantic segmentation and super-resolution reconstruction results than the single model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
十三不靠完成签到,获得积分10
8秒前
山中蠢驴发布了新的文献求助10
10秒前
10秒前
12秒前
gg完成签到,获得积分10
13秒前
比亚迪士尼在逃公主完成签到,获得积分10
14秒前
ve发布了新的文献求助10
15秒前
活爹完成签到,获得积分10
17秒前
杨雨帆发布了新的文献求助10
17秒前
18秒前
18秒前
外向半青完成签到,获得积分10
20秒前
传奇3应助杨雨帆采纳,获得10
21秒前
WSY发布了新的文献求助10
23秒前
如意葶完成签到 ,获得积分10
23秒前
Ava应助追寻的易烟采纳,获得10
24秒前
ve完成签到,获得积分10
24秒前
香蕉觅云应助靓丽紫真采纳,获得10
24秒前
wj1给wj1的求助进行了留言
24秒前
lingzhi完成签到 ,获得积分10
25秒前
Jenny发布了新的文献求助10
25秒前
Jasper应助chenxuuu采纳,获得10
27秒前
28秒前
youchengQin完成签到 ,获得积分10
28秒前
阔达的盼海完成签到,获得积分10
33秒前
ven发布了新的文献求助10
33秒前
芳芳完成签到,获得积分10
34秒前
Ava应助粉色采纳,获得10
34秒前
陶醉毛豆发布了新的文献求助30
35秒前
inter发布了新的文献求助10
40秒前
酷炫蛋挞完成签到 ,获得积分10
41秒前
44秒前
邓紫棋完成签到,获得积分10
46秒前
Lucas应助De_Frank123采纳,获得10
48秒前
mao完成签到,获得积分10
49秒前
可耐的语海完成签到,获得积分10
49秒前
吱吱发布了新的文献求助10
49秒前
55秒前
仲夏夜之梦完成签到,获得积分10
56秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967