Noise2Void: unsupervised denoising of PET images

降噪 人工智能 模式识别(心理学) 计算机科学 计算机视觉 图像去噪
作者
Tzu-An Song,Fan Yang,Joyita Dutta
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (21): 214002-214002 被引量:34
标识
DOI:10.1088/1361-6560/ac30a0
摘要

Objective: Elevated noise levels in positron emission tomography (PET) images lower image quality and quantitative accuracy and are a confounding factor for clinical interpretation. The objective of this paper is to develop a PET image denoising technique based on unsupervised deep learning. Significance: Recent advances in deep learning have ushered in a wide array of novel denoising techniques, several of which have been successfully adapted for PET image reconstruction and post-processing. The bulk of the deep learning research so far has focused on supervised learning schemes, which, for the image denoising problem, require paired noisy and noiseless/low-noise images. This requirement tends to limit the utility of these methods for medical applications as paired training datasets are not always available. Furthermore, to achieve the best-case performance of these methods, it is essential that the datasets for training and subsequent real-world application have consistent image characteristics (e.g. noise, resolution, etc), which is rarely the case for clinical data. To circumvent these challenges, it is critical to develop unsupervised techniques that obviate the need for paired training data. Approach: In this paper, we have adapted Noise2Void, a technique that relies on corrupt images alone for model training, for PET image denoising and assessed its performance using PET neuroimaging data. Noise2Void is an unsupervised approach that uses a blind-spot network design. It requires only a single noisy image as its input, and, therefore, is well-suited for clinical settings. During the training phase, a single noisy PET image serves as both the input and the target. Here we present a modified version of Noise2Void based on a transfer learning paradigm that involves group-level pretraining followed by individual fine-tuning. Furthermore, we investigate the impact of incorporating an anatomical image as a second input to the network. Main Results: We validated our denoising technique using simulation data based on the BrainWeb digital phantom. We show that Noise2Void with pretraining and/or anatomical guidance leads to higher peak signal-to-noise ratios than traditional denoising schemes such as Gaussian filtering, anatomically guided non-local means filtering, and block-matching and 4D filtering. We used the Noise2Noise denoising technique as an additional benchmark. For clinical validation, we applied this method to human brain imaging datasets. The clinical findings were consistent with the simulation results confirming the translational value of Noise2Void as a denoising tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张磊完成签到,获得积分10
3秒前
ableyy发布了新的文献求助10
4秒前
5秒前
学霸宇大王完成签到 ,获得积分10
6秒前
6秒前
情怀应助崔崔采纳,获得10
7秒前
小迪迦奥特曼完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
酷波er应助羊Q采纳,获得10
11秒前
熊孩子发布了新的文献求助10
11秒前
13秒前
小张发布了新的文献求助10
13秒前
16秒前
18秒前
hh发布了新的文献求助10
20秒前
21秒前
ty完成签到,获得积分10
22秒前
崔崔发布了新的文献求助10
23秒前
天天快乐应助熊博士采纳,获得10
23秒前
wb完成签到,获得积分10
24秒前
yier发布了新的文献求助10
25秒前
小二郎应助yangyang采纳,获得10
27秒前
27秒前
27秒前
米丸子完成签到,获得积分10
28秒前
29秒前
29秒前
lulululu发布了新的文献求助10
31秒前
32秒前
32秒前
ejiiame发布了新的文献求助30
33秒前
34秒前
34秒前
37秒前
yangyang发布了新的文献求助10
39秒前
40秒前
40秒前
41秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387666
求助须知:如何正确求助?哪些是违规求助? 3000256
关于积分的说明 8790493
捐赠科研通 2686215
什么是DOI,文献DOI怎么找? 1471580
科研通“疑难数据库(出版商)”最低求助积分说明 680386
邀请新用户注册赠送积分活动 673117