Predicting 1-H Dead Fuel Moisture Content at Regional Scales Using Machine Learning from Himawari-8 Data

随机森林 环境科学 线性回归 含水量 气象学 卫星 均方误差 经验模型 遥感 计算机科学 机器学习 统计 数学 工程类 地理 模拟 航空航天工程 岩土工程
作者
Chunquan Fan,Bin He,Ping Kong,Hao Xu,Zhang Qiang,Xingwen Quan
标识
DOI:10.1109/igarss47720.2021.9554874
摘要

Dead fuel moisture content (DFMC) is of important significance for estimating and predicting forest wildfire risk, in which 1-h dead fuel is most critical as the easiest fuel to ignite. Current methodologies based on empirical and physical models rely heavily on meteorological data from uneven and sparse stations. In contrast, satellite data become a better choice since its continuous surface observations. Of all satellites, Himawari-8 is the most appropriate data to meet the rapid changes of DFMC throughout the day owing to its high time resolution. Thus, this study explored the application of 1-h DFMC predicting using machine learning from Himawari -8 data. Random forest was selected for the prediction and linear regression was used for comparison. The results showed that random forest has a satisfactory performance with higher R2 (0.53) and lower RMSE (3.15%) than that of linear regression (R2=0.21, RMSE=5.47%). The research suggested that predicting 1-h DFMC at regional scales using machine learning from Himawari -8 data is promising.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
好好应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
好好应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
好好应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
dew应助科研通管家采纳,获得50
1秒前
FU发布了新的文献求助10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
好好应助科研通管家采纳,获得10
2秒前
xu应助科研通管家采纳,获得10
2秒前
风清扬应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
3秒前
路人发布了新的文献求助10
4秒前
4秒前
隐形曼青应助猪猪hero采纳,获得10
4秒前
6秒前
迷路的寒云完成签到,获得积分20
6秒前
7秒前
搜集达人应助路人采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716