Defect attention template generation cycleGAN for weakly supervised surface defect segmentation

鉴别器 分割 人工智能 计算机科学 模式识别(心理学) 交叉口(航空) 相似性(几何) 模板 灰度 像素 图像(数学) 电信 探测器 工程类 航空航天工程 程序设计语言
作者
Shuanlong Niu,Bin Li,Xinggang Wang,Songping He,Yaru Peng
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:123: 108396-108396 被引量:22
标识
DOI:10.1016/j.patcog.2021.108396
摘要

Surface defect segmentation is very important for the quality inspection of industrial production and is an important pattern recognition problem. Although deep learning (DL) has achieved remarkable results in surface defect segmentation, most of these results have been obtained by using massive images with pixel-level annotations, which are difficult to obtain at industrial sites. This paper proposes a weakly supervised defect segmentation method based on the dynamic templates generated by an improved cycle-consistent generative adversarial network (CycleGAN) trained by image-level annotations. To generate better templates for defects with weak signals, we propose a defect attention module by applying the defect residual for the discriminator to strengthen the elimination of defect regions and suppress changes in the background. A defect cycle-consistent loss is designed by adding structural similarity (SSIM) to the original L1 loss to include the grayscale and structural features; the proposed loss can better model the inner structure of defects. After obtaining the defect-free template, a defect segmentation map can easily be obtained through a simple image comparison and threshold segmentation. Experiments show that the proposed method is both efficient and effective, significantly outperforms other weakly supervised methods, and achieves performance that is comparable or even superior to that of supervised methods on three industrial datasets (intersection over union (IoU) on the DAGM 2007, KSD and CCSD datasets of 78.28%, 59.43%,and 68.83%, respectively). The proposed method can also be employed as a semiautomatic annotation tool combined with active learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助liwenjie采纳,获得10
刚刚
科目三应助zeta采纳,获得10
刚刚
Lv完成签到,获得积分10
2秒前
2秒前
sherrinford完成签到,获得积分10
2秒前
Hello应助katsuras采纳,获得10
3秒前
大个应助没有昵称采纳,获得10
4秒前
琪音_xy发布了新的文献求助10
4秒前
4秒前
weiwei发布了新的文献求助20
4秒前
王若琪完成签到 ,获得积分10
5秒前
5秒前
6秒前
HLQF完成签到,获得积分10
7秒前
7秒前
seaYU关注了科研通微信公众号
7秒前
felix发布了新的文献求助10
7秒前
T拐拐发布了新的文献求助10
9秒前
立婉陶应助如意的灰狼采纳,获得10
9秒前
在水一方应助如意的灰狼采纳,获得10
9秒前
9秒前
wanci应助讨厌胡萝卜采纳,获得10
9秒前
10秒前
10秒前
刘文宇发布了新的文献求助50
11秒前
12秒前
12秒前
clione完成签到,获得积分10
12秒前
香蕉觅云应助xiaofenzi采纳,获得10
13秒前
liwenjie发布了新的文献求助10
15秒前
bpg28完成签到,获得积分20
15秒前
15秒前
等风的人发布了新的文献求助10
16秒前
16秒前
16秒前
今后应助DreamMaker采纳,获得10
16秒前
Jasper应助haoyooo采纳,获得10
17秒前
夕夕成玦发布了新的文献求助10
17秒前
深情安青应助Lv采纳,获得10
17秒前
hyq完成签到,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011029
求助须知:如何正确求助?哪些是违规求助? 3550660
关于积分的说明 11306082
捐赠科研通 3284968
什么是DOI,文献DOI怎么找? 1810924
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811526