Defect attention template generation cycleGAN for weakly supervised surface defect segmentation

鉴别器 分割 人工智能 计算机科学 模式识别(心理学) 交叉口(航空) 相似性(几何) 模板 灰度 像素 图像(数学) 电信 探测器 工程类 航空航天工程 程序设计语言
作者
Shuanlong Niu,Bin Li,Xinggang Wang,Songping He,Yaru Peng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:123: 108396-108396 被引量:22
标识
DOI:10.1016/j.patcog.2021.108396
摘要

Surface defect segmentation is very important for the quality inspection of industrial production and is an important pattern recognition problem. Although deep learning (DL) has achieved remarkable results in surface defect segmentation, most of these results have been obtained by using massive images with pixel-level annotations, which are difficult to obtain at industrial sites. This paper proposes a weakly supervised defect segmentation method based on the dynamic templates generated by an improved cycle-consistent generative adversarial network (CycleGAN) trained by image-level annotations. To generate better templates for defects with weak signals, we propose a defect attention module by applying the defect residual for the discriminator to strengthen the elimination of defect regions and suppress changes in the background. A defect cycle-consistent loss is designed by adding structural similarity (SSIM) to the original L1 loss to include the grayscale and structural features; the proposed loss can better model the inner structure of defects. After obtaining the defect-free template, a defect segmentation map can easily be obtained through a simple image comparison and threshold segmentation. Experiments show that the proposed method is both efficient and effective, significantly outperforms other weakly supervised methods, and achieves performance that is comparable or even superior to that of supervised methods on three industrial datasets (intersection over union (IoU) on the DAGM 2007, KSD and CCSD datasets of 78.28%, 59.43%,and 68.83%, respectively). The proposed method can also be employed as a semiautomatic annotation tool combined with active learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天行健完成签到,获得积分10
1秒前
ggg发布了新的文献求助10
1秒前
花痴的骁完成签到,获得积分10
1秒前
CipherSage应助Xianhe采纳,获得10
1秒前
2秒前
丘比特应助111采纳,获得10
2秒前
TTTT发布了新的文献求助10
2秒前
小奇葩完成签到,获得积分10
2秒前
赘婿应助Dailei采纳,获得10
3秒前
老干部发布了新的文献求助10
4秒前
4秒前
4秒前
毛豆应助剁辣椒蒸鱼头采纳,获得10
5秒前
may发布了新的文献求助10
5秒前
6秒前
安济发布了新的文献求助10
7秒前
tangtang完成签到,获得积分20
7秒前
xianglinnnn发布了新的文献求助20
8秒前
啊呜发布了新的文献求助10
8秒前
yar给叶子宁的求助进行了留言
10秒前
10秒前
11发布了新的文献求助10
10秒前
萝卜猪发布了新的文献求助20
10秒前
11秒前
畅快的胡萝卜完成签到,获得积分10
11秒前
段儿完成签到,获得积分10
14秒前
藏续发布了新的文献求助10
16秒前
17秒前
18秒前
长歌完成签到 ,获得积分10
19秒前
Daisypharma完成签到,获得积分10
19秒前
子车茗应助无限尔容采纳,获得10
20秒前
su发布了新的文献求助10
20秒前
20秒前
老干部完成签到,获得积分10
20秒前
王大炮完成签到 ,获得积分10
21秒前
852应助优美丹雪采纳,获得10
21秒前
21秒前
倪妮发布了新的文献求助10
21秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269843
求助须知:如何正确求助?哪些是违规求助? 2909430
关于积分的说明 8349120
捐赠科研通 2579802
什么是DOI,文献DOI怎么找? 1403046
科研通“疑难数据库(出版商)”最低求助积分说明 655607
邀请新用户注册赠送积分活动 634869