Defect attention template generation cycleGAN for weakly supervised surface defect segmentation

鉴别器 分割 人工智能 计算机科学 模式识别(心理学) 交叉口(航空) 相似性(几何) 模板 灰度 像素 图像(数学) 电信 探测器 工程类 航空航天工程 程序设计语言
作者
Shuanlong Niu,Bin Li,Xinggang Wang,Songping He,Yaru Peng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:123: 108396-108396 被引量:22
标识
DOI:10.1016/j.patcog.2021.108396
摘要

Surface defect segmentation is very important for the quality inspection of industrial production and is an important pattern recognition problem. Although deep learning (DL) has achieved remarkable results in surface defect segmentation, most of these results have been obtained by using massive images with pixel-level annotations, which are difficult to obtain at industrial sites. This paper proposes a weakly supervised defect segmentation method based on the dynamic templates generated by an improved cycle-consistent generative adversarial network (CycleGAN) trained by image-level annotations. To generate better templates for defects with weak signals, we propose a defect attention module by applying the defect residual for the discriminator to strengthen the elimination of defect regions and suppress changes in the background. A defect cycle-consistent loss is designed by adding structural similarity (SSIM) to the original L1 loss to include the grayscale and structural features; the proposed loss can better model the inner structure of defects. After obtaining the defect-free template, a defect segmentation map can easily be obtained through a simple image comparison and threshold segmentation. Experiments show that the proposed method is both efficient and effective, significantly outperforms other weakly supervised methods, and achieves performance that is comparable or even superior to that of supervised methods on three industrial datasets (intersection over union (IoU) on the DAGM 2007, KSD and CCSD datasets of 78.28%, 59.43%,and 68.83%, respectively). The proposed method can also be employed as a semiautomatic annotation tool combined with active learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
加油加油发布了新的文献求助10
1秒前
lili完成签到 ,获得积分10
2秒前
文剑武书生完成签到,获得积分10
3秒前
科研通AI5应助无限鞅采纳,获得10
3秒前
3秒前
852应助木棉采纳,获得10
3秒前
4秒前
卓哥完成签到,获得积分10
5秒前
6秒前
Agan发布了新的文献求助10
6秒前
6秒前
7秒前
morlison发布了新的文献求助10
7秒前
科研通AI5应助金色年华采纳,获得10
9秒前
充电宝应助kh453采纳,获得10
9秒前
正经俠发布了新的文献求助10
9秒前
一衣发布了新的文献求助20
10秒前
可爱的函函应助药学牛马采纳,获得10
10秒前
XM发布了新的文献求助10
10秒前
专注之双完成签到,获得积分10
11秒前
SciGPT应助十一采纳,获得10
11秒前
11秒前
A1234完成签到,获得积分10
12秒前
刘铭晨发布了新的文献求助10
13秒前
孙冉冉完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
大模型应助hhzz采纳,获得10
18秒前
一只智慧喵完成签到,获得积分10
18秒前
科目三应助Fundamental采纳,获得10
19秒前
19秒前
miumiuka发布了新的文献求助10
20秒前
greenPASS666发布了新的文献求助10
21秒前
xuanxuan发布了新的文献求助10
21秒前
zfy发布了新的文献求助10
23秒前
23秒前
23秒前
Maor完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808