Defect attention template generation cycleGAN for weakly supervised surface defect segmentation

鉴别器 分割 人工智能 计算机科学 模式识别(心理学) 交叉口(航空) 相似性(几何) 模板 灰度 像素 图像(数学) 工程类 航空航天工程 电信 探测器 程序设计语言
作者
Shuanlong Niu,Bin Li,Xinggang Wang,Songping He,Yaru Peng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:123: 108396-108396 被引量:22
标识
DOI:10.1016/j.patcog.2021.108396
摘要

Surface defect segmentation is very important for the quality inspection of industrial production and is an important pattern recognition problem. Although deep learning (DL) has achieved remarkable results in surface defect segmentation, most of these results have been obtained by using massive images with pixel-level annotations, which are difficult to obtain at industrial sites. This paper proposes a weakly supervised defect segmentation method based on the dynamic templates generated by an improved cycle-consistent generative adversarial network (CycleGAN) trained by image-level annotations. To generate better templates for defects with weak signals, we propose a defect attention module by applying the defect residual for the discriminator to strengthen the elimination of defect regions and suppress changes in the background. A defect cycle-consistent loss is designed by adding structural similarity (SSIM) to the original L1 loss to include the grayscale and structural features; the proposed loss can better model the inner structure of defects. After obtaining the defect-free template, a defect segmentation map can easily be obtained through a simple image comparison and threshold segmentation. Experiments show that the proposed method is both efficient and effective, significantly outperforms other weakly supervised methods, and achieves performance that is comparable or even superior to that of supervised methods on three industrial datasets (intersection over union (IoU) on the DAGM 2007, KSD and CCSD datasets of 78.28%, 59.43%,and 68.83%, respectively). The proposed method can also be employed as a semiautomatic annotation tool combined with active learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Verity应助cfyoung采纳,获得10
1秒前
1秒前
4秒前
sansan完成签到 ,获得积分10
8秒前
14秒前
15秒前
大钱哥发布了新的文献求助10
16秒前
充电宝应助安静真采纳,获得10
16秒前
17秒前
17秒前
粱烨华发布了新的文献求助10
18秒前
18秒前
王玉娇发布了新的文献求助10
22秒前
Frieren完成签到 ,获得积分10
23秒前
大钱哥完成签到,获得积分10
24秒前
可爱的函函应助粱烨华采纳,获得10
25秒前
26秒前
111发布了新的文献求助10
26秒前
28秒前
科研通AI6应助整齐便当采纳,获得10
31秒前
musicyy222发布了新的文献求助30
32秒前
闪闪的鹏博完成签到,获得积分10
34秒前
bkagyin应助yannnis采纳,获得10
34秒前
37秒前
37秒前
科研通AI6应助fujun0095采纳,获得10
40秒前
Yuan完成签到 ,获得积分10
41秒前
学术地雷发布了新的文献求助10
42秒前
随性发布了新的文献求助30
43秒前
111完成签到,获得积分10
46秒前
SY15732023811完成签到 ,获得积分10
46秒前
敷衍完成签到 ,获得积分10
46秒前
Lucas应助追寻的白安采纳,获得10
48秒前
冷酷莫言发布了新的文献求助10
49秒前
52秒前
zw发布了新的文献求助10
52秒前
西瓜刀完成签到 ,获得积分10
53秒前
xiaojie发布了新的文献求助10
56秒前
56秒前
雪海发布了新的文献求助10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645517
关于积分的说明 14675412
捐赠科研通 4586664
什么是DOI,文献DOI怎么找? 2516501
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951