Predictive Genomic Biomarkers of Hormonal Therapy Versus Chemotherapy Benefit in Metastatic Castration-resistant Prostate Cancer

医学 紫杉烷 前列腺癌 队列 内科学 肿瘤科 回顾性队列研究 队列研究 激素疗法 癌症 乳腺癌
作者
Ryon P. Graf,Virginia Fisher,Joaquı́n Mateo,Ole Gjoerup,Russell W. Madison,Kira Raskina,Hanna Tukachinsky,James Creeden,Rachel Cunningham,Richard S.P. Huang,Douglas A. Mata,Jeffrey S. Ross,Geoffrey R. Oxnard,Jeffrey M. Venstrom,Amado J. Zurita
出处
期刊:European Urology [Elsevier]
卷期号:81 (1): 37-47 被引量:26
标识
DOI:10.1016/j.eururo.2021.09.030
摘要

Biomarkers predicting second-generation novel hormonal therapy (NHT) benefit relative to taxanes are critical for optimized treatment decisions for metastatic castration-resistant prostate cancer (mCRPC) patients. These associations have not been reported simultaneously for common mCRPC genomic biomarkers.To evaluate predictive associations of common genomic aberrations in mCRPC using an established comprehensive genomic profiling (CGP) system.A retrospective cohort study used data from a deidentified US-based clinicogenomic database comprising patients treated in routine clinical practice between 2011 and 2020, evaluated with Foundation Medicine CGP in tissue biopsies obtained around the time of treatment decision. The main cohort included 180 NHT and 179 taxane lines of therapy (LOTs) from 308 unique patients. The sequential cohort comprised a subset of the main cohort NHT LOTs immediately followed by taxane from 55 unique patients.Prostate-specific antigen (PSA) response, time to next treatment (TTNT), and overall survival (OS) were assessed. Main cohort analyses were adjusted for known treatment assignment biases via inverse probability of treatment weighting (IPTW) in treatment interaction models.In the main cohort, patients with AR amplification (ARamp) or PTEN aberrations (PTENalt) had worse relative PSA response on NHT versus taxanes compared with patients without. Patients with ARamp, PTENalt, or RB1 aberrations (RB1alt) also had worse relative TTNT and OS on NHT but not on taxanes. In multivariable models for TTNT and OS adjusted via IPTW, ARamp, PTENalt, and RB1alt were shown as poor prognostic factors overall and demonstrated significant treatment interactions, indicating reduced hazards of therapy switch and death on taxanes versus NHT. Consistent associations favoring increased benefit from subsequent taxane despite prior NHT treatment line were observed only for ARamp in the sequential cohort, in which very few patients had RB1alt for assessment.ARamp status is a candidate biomarker to predict poor effectiveness of NHT relative to taxanes in mCRPC in scenarios where both options are considered.Specific alterations in the DNA of tumors may assist in choosing between novel oral hormonal therapies and standard chemotherapy in advanced prostate cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助ywx采纳,获得10
刚刚
刚刚
刚刚
like发布了新的文献求助10
刚刚
1秒前
汤圆完成签到,获得积分10
1秒前
独特的高山完成签到,获得积分10
1秒前
1秒前
紫霄客完成签到,获得积分10
1秒前
2秒前
烟花应助蛙蛙采纳,获得10
2秒前
2秒前
han发布了新的文献求助10
2秒前
郭1994完成签到 ,获得积分10
3秒前
sxb10101应助于文志采纳,获得50
3秒前
3秒前
林深沉发布了新的文献求助10
3秒前
闪闪书桃完成签到,获得积分10
3秒前
4秒前
陈欣发布了新的文献求助10
4秒前
11231发布了新的文献求助10
5秒前
5秒前
Tong完成签到,获得积分10
5秒前
ronll发布了新的文献求助10
5秒前
悦耳白山发布了新的文献求助10
5秒前
dophin发布了新的文献求助10
6秒前
6秒前
xiaoguoxiaoguo完成签到,获得积分10
7秒前
warrior发布了新的文献求助10
7秒前
英姑应助包包琪采纳,获得10
7秒前
7秒前
SR完成签到,获得积分10
8秒前
9秒前
芝士发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
BowieHuang应助独特的高山采纳,获得10
11秒前
BowieHuang应助独特的高山采纳,获得10
11秒前
GZH完成签到,获得积分10
11秒前
yangxiaoya完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719347
求助须知:如何正确求助?哪些是违规求助? 5256132
关于积分的说明 15288645
捐赠科研通 4869222
什么是DOI,文献DOI怎么找? 2614690
邀请新用户注册赠送积分活动 1564705
关于科研通互助平台的介绍 1521914