前额叶皮质
神经科学
心理学
抗抑郁药
多巴胺
多巴胺能
光遗传学
多巴胺受体D2
刺激
认知
海马体
作者
Scott A. Wilke,Karen Lavi,Sujin Byeon,Kevin C. Donohue,Vikaas S. Sohal
标识
DOI:10.1016/j.biopsych.2021.11.008
摘要
Background Depression is pleiotropic and influenced by diverse genetic, environmental, and pharmacological factors. Identifying patterns of circuit activity on which many of these factors converge would be important, because studying these patterns could reveal underlying pathophysiological processes and/or novel therapies. Depression is commonly assumed to involve changes within prefrontal circuits, and dopamine D2 receptor (D2R) agonists are increasingly used as adjunctive antidepressants. Nevertheless, how D2Rs influence disease-relevant patterns of prefrontal circuit activity remains unknown. Methods We used brain slice calcium imaging to measure how patterns of prefrontal activity are modulated by D2Rs, antidepressants, and manipulations that increase depression susceptibility. To validate the idea that prefrontal D2Rs might contribute to antidepressant responses, we used optogenetic and genetic manipulations to test how dopamine, D2Rs, and D2R+ neurons contribute to stress-coping behavior. Results Patterns of positively correlated activity in prefrontal microcircuits are specifically enhanced by D2R stimulation as well as by two mechanistically distinct antidepressants, ketamine and fluoxetine. Conversely, this D2R-driven effect was disrupted in two etiologically distinct depression models, a genetic susceptibility model and mice that are susceptible to chronic social defeat. Phasic stimulation of dopaminergic afferents to the prefrontal cortex and closed-loop stimulation of D2R+ neurons increased effortful responses to tail suspension stress, whereas prefrontal D2R deletion reduced the duration of individual struggling episodes. Conclusions Correlated prefrontal microcircuit activity represents a point of convergence for multiple depression-related manipulations. Prefrontal D2Rs enhance this activity. Through this mechanism, prefrontal D2Rs may promote network states associated with antidepressant actions and effortful responses to stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI