Energy recovering for distributed drive electric vehicles (DDEVs) is challenging due to the coupling mechanism between safety, efficiency, and braking performance, especially on complex tire-road adhesion conditions. A new regenerative braking strategy using direct adhesion force control is proposed in this research, considering both the normal braking and the emergency braking on the unknown adhesion road. A fuzzy PI controller is adapted to track an estimated required adhesion force limited to the adhesion peak of an unknown road condition. Furthermore, a braking torque distribution scheme is formulated for DDEVs. A simulation was conducted in comparison with the PI and the MTTE control methods. Results show that the proposed scheme achieves a higher utilization rate of road adhesion and a higher braking energy recovery effect while functioning a more stable braking maneuver.