亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GraphRegNet: Deep Graph Regularisation Networks on Sparse Keypoints for Dense Registration of 3D Lung CTs

人工智能 计算机科学 图像配准 深度学习 杠杆(统计) 医学影像学 推论 计算机视觉 模式识别(心理学) 人工神经网络 图形 卷积神经网络 机器学习 图像(数学) 理论计算机科学
作者
Lasse Hansen,Mattias P. Heinrich‬
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2246-2257 被引量:48
标识
DOI:10.1109/tmi.2021.3073986
摘要

In the last two years learning-based methods have started to show encouraging results in different supervised and unsupervised medical image registration tasks. Deep neural networks enable (near) real time applications through fast inference times and have tremendous potential for increased registration accuracies by task-specific learning. However, estimation of large 3D deformations, for example present in inhale to exhale lung CT or interpatient abdominal MRI registration, is still a major challenge for the widely adopted U-Net-like network architectures. Even when using multi-level strategies, current state-of-the-art DL registration results do not yet reach the high accuracy of conventional frameworks. To overcome the problem of large deformations for deep learning approaches, in this work, we present GraphRegNet, a sparse keypoint-based geometric network for dense deformable medical image registration. Similar to the successful 2D optical flow estimation of FlowNet or PWC-Net we leverage discrete dense displacement maps to facilitate the registration process. In order to cope with enormously increasing memory requirements when working with displacement maps in 3D medical volumes and to obtain a well-regularised and accurate deformation field we 1) formulate the registration task as the prediction of displacement vectors on a sparse irregular grid of distinctive keypoints and 2) introduce our efficient GraphRegNet for displacement regularisation, a combination of convolutional and graph neural network layers in a unified architecture. In our experiments on exhale to inhale lung CT registration we demonstrate substantial improvements (TRE below 1.4 mm) over other deep learning methods. Our code is publicly available at https://github.com/multimodallearning/graphregnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卟卟高升完成签到 ,获得积分10
7秒前
三好学生发布了新的文献求助10
7秒前
科研通AI2S应助欢欢采纳,获得10
13秒前
科研通AI5应助Rita采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
21秒前
清爽天川完成签到 ,获得积分10
21秒前
欢欢完成签到,获得积分10
22秒前
完美世界应助KH采纳,获得10
23秒前
25秒前
bcc666发布了新的文献求助10
26秒前
26秒前
丰富的宛亦完成签到 ,获得积分10
30秒前
冷傲新柔发布了新的文献求助10
31秒前
王显鹏发布了新的文献求助10
33秒前
33秒前
天天快乐应助bcc666采纳,获得10
34秒前
内向耷完成签到,获得积分20
35秒前
今后应助冷傲新柔采纳,获得10
37秒前
小蘑菇应助三好学生采纳,获得10
39秒前
common1988发布了新的文献求助10
49秒前
49秒前
53秒前
KH发布了新的文献求助10
56秒前
三好学生发布了新的文献求助10
56秒前
王显鹏完成签到,获得积分20
57秒前
hqh驳回了SciGPT应助
1分钟前
汉堡包应助王显鹏采纳,获得10
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
fsznc完成签到 ,获得积分0
1分钟前
1分钟前
沉静天思完成签到,获得积分10
1分钟前
KH完成签到,获得积分10
1分钟前
完美世界应助淡淡的白羊采纳,获得10
1分钟前
VDC应助zyx采纳,获得30
1分钟前
Rita发布了新的文献求助10
1分钟前
1分钟前
清森完成签到 ,获得积分10
1分钟前
Xiaoxiao应助沉静天思采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555693
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390757
捐赠科研通 2831039
什么是DOI,文献DOI怎么找? 1556299
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803