The Mechanical Basis of Memory - the MeshCODE Theory.

认知科学 心理学 海马体 记忆巩固 突触可塑性
作者
Benjamin T. Goult
出处
期刊:Frontiers in Molecular Neuroscience [Frontiers Media SA]
卷期号:14: 592951-592951 被引量:7
标识
DOI:10.3389/fnmol.2021.592951
摘要

One of the major unsolved mysteries of biological science concerns the question of where and in what form information is stored in the brain. I propose that memory is stored in the brain in a mechanically encoded binary format written into the conformations of proteins found in the cell-extracellular matrix (ECM) adhesions that organise each and every synapse. The MeshCODE framework outlined here represents a unifying theory of data storage in animals, providing read-write storage of both dynamic and persistent information in a binary format. Mechanosensitive proteins that contain force-dependent switches can store information persistently, which can be written or updated using small changes in mechanical force. These mechanosensitive proteins, such as talin, scaffold each synapse, creating a meshwork of switches that together form a code, the so-called MeshCODE. Large signalling complexes assemble on these scaffolds as a function of the switch patterns and these complexes would both stabilise the patterns and coordinate synaptic regulators to dynamically tune synaptic activity. Synaptic transmission and action potential spike trains would operate the cytoskeletal machinery to write and update the synaptic MeshCODEs, thereby propagating this coding throughout the organism. Based on established biophysical principles, such a mechanical basis for memory would provide a physical location for data storage in the brain, with the binary patterns, encoded in the information-storing mechanosensitive molecules in the synaptic scaffolds, and the complexes that form on them, representing the physical location of engrams. Furthermore, the conversion and storage of sensory and temporal inputs into a binary format would constitute an addressable read-write memory system, supporting the view of the mind as an organic supercomputer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
七街完成签到 ,获得积分10
1秒前
包容的忆灵完成签到 ,获得积分10
1秒前
程志杰应助朴素大米采纳,获得10
2秒前
3秒前
十二倍根号二完成签到,获得积分10
4秒前
友好若南完成签到,获得积分10
4秒前
李睿完成签到,获得积分10
4秒前
4秒前
薄哼哼完成签到,获得积分10
5秒前
方赫然应助kudoukoumei采纳,获得10
5秒前
橘子牛奶完成签到,获得积分10
6秒前
shiqiang mu应助Epiphany采纳,获得10
7秒前
含蓄世界完成签到,获得积分10
7秒前
zwj003完成签到,获得积分10
8秒前
迷路迎南完成签到 ,获得积分10
8秒前
枣树先生发布了新的文献求助10
8秒前
zyz完成签到,获得积分10
8秒前
gaga完成签到,获得积分10
9秒前
9秒前
Daryl完成签到,获得积分10
9秒前
9秒前
谦让寻凝完成签到 ,获得积分10
10秒前
山月完成签到,获得积分10
10秒前
Lee发布了新的文献求助10
10秒前
天天快乐应助明月松间照采纳,获得10
10秒前
橙子完成签到 ,获得积分10
10秒前
11秒前
会咩的嘉人璐完成签到,获得积分10
13秒前
13秒前
开朗的踏歌完成签到,获得积分10
13秒前
陈住气完成签到,获得积分10
14秒前
完美世界应助ZHANG_Kun采纳,获得80
14秒前
小奋青完成签到 ,获得积分10
14秒前
jie完成签到,获得积分10
14秒前
15秒前
奔跑石小猛完成签到,获得积分10
15秒前
文献文献完成签到 ,获得积分10
16秒前
wlei发布了新的文献求助10
17秒前
陈住气发布了新的文献求助10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249108
求助须知:如何正确求助?哪些是违规求助? 2892426
关于积分的说明 8271779
捐赠科研通 2560741
什么是DOI,文献DOI怎么找? 1389228
科研通“疑难数据库(出版商)”最低求助积分说明 651047
邀请新用户注册赠送积分活动 627873