Integrated Ensemble Weight of Evidence and Logistic Regression for Potential Groundwater Mapping: An Application to the Northern Piedmont of High Atlas Mountains (Morocco)

地下水 环境科学 地图集(解剖学) 地下水补给 地理 水文学(农业) 水资源
作者
Hassane Rahali,Siham Elaryf,Hicham Amar,Bouchra Zellou
出处
期刊:Environmental science and engineering 卷期号:: 1703-1710
标识
DOI:10.1007/978-3-030-51210-1_270
摘要

The objective of this study was to seek faster and cost-effective ways to assess groundwater potential in both bedrock and mixed bedrock and structurally deformed alluvial environments in an area located in the Piedmont of High Atlas Mountains (Morocco). Two data-mining techniques, namely, the Weights of Evidence (WofE) and Logistic Regression (LR) were implemented based on the spatial association between productive well/spring locations and effective factors governing the regional groundwater recharge. Prior to building these binary classification models, a variable screening and exploratory data analysis through Information Value (IV) and WofE were performed to quickly rate all the variables according to their predictive power. This step allows us to weed out 2 out of 10 variables that simply contain no additional information that will help predict GWP areas. Making use of the link that exists between WofE and LR, we then refitted the LR model using the WofE scale for recoding predictors. The predictive capability of each model was determined by the Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC). The obtained AUC values were 0.80, 0.83, and 0.88 for LR, WofE, and (WofE- LR), respectively. This result indicates that the integrated LR-WofE model is a relatively good estimator of groundwater potential mapping in comparison with the single application of these models. The produced groundwater potential maps can serve for better planning and management of groundwater resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
咚咚蛋发布了新的文献求助10
1秒前
2秒前
甜甜圈完成签到,获得积分10
4秒前
钱多多发布了新的文献求助10
5秒前
CipherSage应助siyuwang1234采纳,获得10
6秒前
8秒前
雪中发布了新的文献求助10
8秒前
失眠的易梦应助林夕儿采纳,获得10
10秒前
10秒前
充电宝应助坚强的严青采纳,获得10
10秒前
曾经问玉发布了新的文献求助30
11秒前
在水一方应助T_MC郭采纳,获得10
12秒前
斯文败类应助T_MC郭采纳,获得10
12秒前
ding应助T_MC郭采纳,获得10
12秒前
昭谏完成签到,获得积分10
12秒前
烟花应助T_MC郭采纳,获得10
12秒前
fifteen发布了新的文献求助10
13秒前
天天快乐应助滕侑林采纳,获得10
13秒前
13秒前
Charail发布了新的文献求助30
14秒前
U2完成签到,获得积分10
14秒前
15秒前
打打应助ACEmeng采纳,获得10
15秒前
16秒前
cheney完成签到,获得积分10
16秒前
Orange应助雪中采纳,获得10
17秒前
qhy123发布了新的文献求助10
18秒前
mujianhua完成签到,获得积分10
18秒前
科研通AI2S应助鲤鱼谷秋采纳,获得10
18秒前
18秒前
18秒前
19秒前
墨墨发布了新的文献求助10
21秒前
21秒前
深情安青应助suka采纳,获得10
21秒前
22秒前
衾L发布了新的文献求助10
22秒前
落叶无悔完成签到,获得积分10
23秒前
潇洒紫寒完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157832
求助须知:如何正确求助?哪些是违规求助? 2809154
关于积分的说明 7880665
捐赠科研通 2467655
什么是DOI,文献DOI怎么找? 1313641
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943