Arabic Fake News Detection: Comparative Study of Neural Networks and Transformer‐Based Approaches

阿拉伯语 计算机科学 变压器 人工神经网络 人工智能 假新闻 工程类 语言学 电气工程 互联网隐私 电压 哲学
作者
Maha Al-Yahya,Hend S. Al‐Khalifa,Heyam H. Al-Baity,Duaa AlSaeed,Amr Essam
出处
期刊:Complexity [Hindawi Publishing Corporation]
卷期号:2021 (1) 被引量:74
标识
DOI:10.1155/2021/5516945
摘要

Fake news detection (FND) involves predicting the likelihood that a particular news article (news report, editorial, expose, etc.) is intentionally deceptive. Arabic FND started to receive more attention in the last decade, and many detection approaches demonstrated some ability to detect fake news on multiple datasets. However, most existing approaches do not consider recent advances in natural language processing, i.e., the use of neural networks and transformers. This paper presents a comprehensive comparative study of neural network and transformer‐based language models used for Arabic FND. We examine the use of neural networks and transformer‐based language models for Arabic FND and show their performance compared to each other. We also conduct an extensive analysis of the possible reasons for the difference in performance results obtained by different approaches. The results demonstrate that transformer‐based models outperform the neural network‐based solutions, which led to an increase in the F1 score from 0.83 (best neural network‐based model, GRU) to 0.95 (best transformer‐based model, QARiB), and it boosted the accuracy by 16% compared to the best in neural network‐based solutions. Finally, we highlight the main gaps in Arabic FND research and suggest future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小猪少年呆呆完成签到 ,获得积分10
1秒前
xiancdc发布了新的文献求助30
1秒前
叁叁发布了新的文献求助10
1秒前
1秒前
xx发布了新的文献求助20
2秒前
任性的诗柳完成签到,获得积分10
2秒前
我想退学完成签到,获得积分10
2秒前
彭于晏应助菠萝炒饭采纳,获得10
2秒前
任性迎南完成签到,获得积分10
3秒前
通通完成签到,获得积分10
3秒前
杨pangpang完成签到,获得积分10
3秒前
minjeong完成签到,获得积分10
3秒前
Ann发布了新的文献求助10
3秒前
wxy完成签到,获得积分10
3秒前
酸柠檬本檬完成签到,获得积分10
4秒前
虚心盼夏发布了新的文献求助200
4秒前
李爱国应助kevindm采纳,获得10
4秒前
12完成签到,获得积分10
4秒前
CodeCraft应助xu采纳,获得10
4秒前
十里桃花不徘徊完成签到,获得积分10
5秒前
5秒前
李爱国应助任性的诗柳采纳,获得10
6秒前
pluto应助酸菜采纳,获得50
6秒前
6秒前
樱桃完成签到,获得积分10
7秒前
绚丽多彩的灰完成签到,获得积分10
7秒前
暴躁的书蕾完成签到,获得积分10
7秒前
7秒前
sanyecai完成签到,获得积分10
7秒前
丘比特应助ZL采纳,获得10
8秒前
FashionBoy应助连秋采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
chunjuan应助科研通管家采纳,获得100
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
实验好难应助科研通管家采纳,获得10
9秒前
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730122
求助须知:如何正确求助?哪些是违规求助? 3274962
关于积分的说明 9989794
捐赠科研通 2990404
什么是DOI,文献DOI怎么找? 1641106
邀请新用户注册赠送积分活动 779551
科研通“疑难数据库(出版商)”最低求助积分说明 748266